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Abstract 

Septal crowding is widely known as a sign of maturity in conchs of ammonoids and nautiloids. However, reduced 
septal spacing may also occur as a consequence of adverse ecological conditions. Here, we address the question how 
septal spacing varied through ontogeny in representatives of some of the major clades of Devonian and Carbonif-
erous ammonoids. We found that the degree of ontogenetic variation is similar between clades and that variation 
is only weakly linked with conch form. The results show that septal crowding alone is insufficient to identify adult-
hood in ammonoids; intermediate septal crowding is a common phenomenon and occurs in various growth stages. 
Changes in septal distances during ontogeny were, in addition to adulthood of the individuals, a passive reaction 
likely caused by fluctuating environmental conditions.
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Introduction
Septal crowding is a long-known phenomenon in ecto- 
cochleate cephalopods (cephalopods with external shell) 
and has frequently been used as an indicator of the end of 
conch growth in nautiloids (e.g. Ward, 1987; Ward et al., 
1981; Willey, 1902) and ammonoids (e.g. Klug, 2001, 
2004; Klug et  al., 2015b; von Buch, 1849; Westermann, 
1971). It was widely accepted to be the most important 
conch character to recognise the fully adult state of nau-
tiloid and ammonoid specimens (Fig. 1). It is also widely 
known that ammonoids had a considerably greater varia-
tion in the spacing of their septa than the living Nautilus 
(Tajika et al., 2015, 2020).

Although septal crowding has indeed proven to be one 
of the cardinal features for detecting maturity in cepha-
lopods in many cases, there is evidence that maturity can 

no longer be considered the sole cause (Hoffmann et al., 
2018a, 2018b; Klug, 2001). In an experimental study of 
Nautilus, Keupp and Riedel (1995) found that septal 
crowding is more likely to occur in individuals kept in 
aquaria in response to unfavourable conditions. More 
precisely, these authors demonstrated a sharp drop in 
septal spacing associated with anomalous growth of the 
aperture of a captive specimen, ending with low septal 
spacing associated with thickening of the septa, shorten-
ing of the body chamber and eventual death of the speci-
men (see also Keupp, 2012).

Kraft et al. (2008) exemplified why approximation can-
not be explained by adulthood alone; many of the speci-
mens from Oued Temertasset (Central Sahara, Algeria) 
display ‘terminal’ but also intermediate phases of septal 
crowding (septal crowding at any growth interval before 
the terminal stage) and none of the species studied shows 
any other adult modification characteristic of terminal 
growth. In turn, septal crowding cannot be used as sin-
gle character for maturity in ectocochleate cephalopods 
(Klug et  al., 2015b), i.e. additional conch modifications 
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have to be identified to be certain about the presence or 
absence of the terminal growth stage.

In general, not much is known in ammonoids about 
variations in chamber length during longer ontogenetic 
intervals, variations in septal spacing and specific pat-
terns of septal approximation immediately before death 
of the individuals. While terminal septal crowding has 
been quite well documented, intermediate septal spacing, 
e.g. possibly caused by unfavourable ecological circum-
stances, pathologies or injuries, has rarely been studied 
(Bayer, 1977; Kraft et  al., 2008; Lehmann, 1975). How-
ever, recent studies show that intermediate septal crowd-
ing is far from being a special case, but can be observed 
almost regularly in ammonoids (Arai & Wani, 2012; 
Bucher et al., 1996; Iwasaki et al., 2020; Kraft et al., 2008; 
Tajika et al., 2015, 2020; Zell & Stinnesbeck, 2016).

The phenomenon of varying septal distances in ammo-
noids has already been explained by a number of hypo- 
theses. These hypotheses include both internal factors 
(changes in conch shape and ornament, changes in life-
style) and external factors (change in the environment, 
injuries resulting from failed predation or parasitic infes-
tation) or a combination of both.

Here we present the results from an analysis of the sep-
tal distances of more than 620 ammonoid specimens of 
the late Givetian (Middle Devonian) to the latest Viséan 
(Early Carboniferous). We studied septal spacing (and 

thus the length of the phragmocone chambers) in angular 
degrees to gain data on fluctuations during the ontoge-
netic development of individuals, within species and 
larger taxonomic units, and throughout the evolutionary 
history of the Palaeozoic ammonoids.

Septal spacing in nautiloids
For the understanding of conch ontogeny and the forma-
tion of septa in ammonoids, the comparison with recent 
nautiloids (Fig. 1B) is of utmost importance, even though 
there is only a rather distant phylogenetic relationship 
(Klug et al., 2015c; Kröger et al., 2011). However, due to 
the fact that both groups have an external shell with the 
same basic physical properties, similar conditions in the 
secretion of shell and septa can be inferred. The growth 
of the conch of Nautilus had already intensively been 
studied in the 1960s to 1980s (Denton & Gilpin-Brown, 
1966; Kahn & Pompea, 1978; Saunders, 1984; Stenzel, 
1964; Ward, 1985, 1987; Ward & Chamberlain, 1983).

The process of septal formation was studied directly 
in Nautilus. Denton and Gilpin-Brown (1966) and Kahn 
and Pompea (1978) reported a constant time interval 
between septal secretion of 14 and 30 days, respectively. 
Subsequent studies have shown that the period of cham-
ber formation is not constant in Nautilus. In specimens 
kept in aquaria, the time between two chamber forma-
tion events was between 85 and 132 days in N. pompilius 

Fig. 1 A Mature specimen of Ceratites nodosus with terminal septal crowding (from von Buch, 1849). B Longitudinally sectioned specimen of 
Nautilus pompilius (specimen MB.C.30283, from unknown locality) with shortened terminal phragmocone chamber and thickened wall of the 
terminal septum
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(Ward, 1985; Ward & Chamberlain, 1983). The periods 
in specimens living in nature are similar: 60–90 days in 
immature specimens of N. pompilius (Cochran et  al., 
1981; Landman & Cochran, 1987) and 120–230  days in 
immature specimens of N. belauensis (Cochran & Land-
man, 1984; Saunders, 1983).

According to Landman (1987), the period of septum 
formation in Nautilus is not determined by an exter-
nal source, but instead depends on internal buoyancy 
requirements and the rate of aperture growth. Nautilus 
adds shell to the aperture, thereby initiating the forma-
tion of new chambers to maintain neutral buoyancy. This 
process of septal secretion and shell growth at the aper-
ture has to be coordinated to maintain neutral buoyancy 
(Ward et al., 1980).

Landman (1987) discussed the different patterns of 
septal spacing in Nautilus and ammonites; while in Nau-
tilus the septa tend to be evenly spaced with an average 
angular spacing of about 25°, septal spacing in ammo-
noids is often highly variable. A reduction in cham-
ber length (defined by the septal distance, measured by 
angular degrees) could reflect a deceleration of growth 
at the aperture, but the time interval between adjacent 
septa may vary. Injuries to the shell margin can lead to 
an interruption of the normal cycle of septum forma-
tion (Ward, 1985). According to Westermann (1973), 
variations in septal spacing may also represent indirect 
responses to morphometric changes during ontogeny. 
Several parameters influence the septal spacing, includ-
ing the thickness of the shell wall and the shape of the 
whorl profile.

Chirat et  al. (2008) emphasised that a relationship 
between septal spacing and relative growth seems obvi-
ous, but that the relationship with absolute growth rate is 
less clear. Ward (1987) already pointed out that although 
the apertural growth rate in Nautilus decreases with 
maturity, this largely occurs after the last septum has 
been secreted. For this reason, Chirat et  al. (2008) con-
sidered that septal spacing is not a reliable indicator of 
absolute growth rate. Even in the case that several indi-
viduals show a similar pattern of septal spacing, this does 
not mean that they have grown at the same absolute rate.

Septal spacing in ammonoids
Reasons for changes in septal distances
Ammonoid species are known to vary for a series of rea-
sons (e.g. De Baets et al., 2015b and references therein). 
The reasons for variations in septal distances of externally 
shelled cephalopods are manifold and range from intrin-
sic factors (conch geometry and its growth, function of 
the conch and its hydrodynamic properties, changes in 
life habits, adulthood) to extrinsic factors (environment, 
predation, parasitism); these reasons and causes can also 

occur in combination and complement each other. In the 
following, we give a brief overview of the most important 
causes of variations in the distances between septa.

Function of the conch
A common opinion is that variations in septal spacing 
are related to hydrostatic properties and serve to regu-
late buoyancy (Hammer & Bucher, 2006; Klug et  al., 
2008; Pérez-Claros, 2005). Differences in septal spacing 
were explained by different conch forms; compressed 
forms had smaller septal spacing than depressed forms 
(Hammer & Bucher, 2006). However, these differences 
only reflect variation within species or higher taxonomic 
units; rapid ontogenetic changes in septal distances can-
not be explained by different conch shapes. Changes in 
the mode of growth caused by changes in habitat during 
ontogeny or by possible daily vertical migrations (West-
ermann, 1990) would also affect the distances between 
the septa (Bucher et al., 1996).

Changes in life habits
Several scientists suggested that ammonoids have under-
gone an ontogenetic change from a planktonic to a more 
active nektonic lifestyle (e.g. Arai & Wani, 2012; De Baets 
et al., 2012, 2015a; Klug, 2001; Landman et al., 2013; Tajika 
et al., 2020; Westermann, 1996; Zell & Stinnesbeck, 2016). 
This can explain why septal crowding occurs more fre-
quently in macroconchs, as their life span might have been 
longer and included a period long enough for migration 
and egg deposition (Zell & Stinnesbeck, 2016). Given this 
assumption, however, it remains questionable why mega-
conchs usually do not show any crowding (Hoffmann & 
Keupp, 2015). Ivanov (1975) introduced the term mega-
conch to refer to single very large specimens of otherwise 
growth-restricted species. The phenomenon has commonly 
been interpreted to indicate pathological gigantism and the 
shells of these megaconchs generally show no sign of growth 
limitation, such as terminal septal crowding or deterministic 
differentiation of the aperture (Hoffmann & Keupp, 2015). 
Manger et  al. (1999) reported rare individuals (perhaps 
megaconchs) of several Late Palaeozoic ammonoid and 
nautiloid species which were two to four times the size of 
their normal counterparts in the same beds and interpreted 
as pathological gigantism related to trematode infestation. 
However, as argued before (De Baets et  al., 2015c; Klug 
et  al., 2015a), no additional support for parasitic infesta-
tions was found and these observations could just indicate 
that large specimens reaching old ages are comparatively 
rare and once reaching a certain size might have a reduced 
number of natural enemies. In addition, such observations 
together with the lack of evidence for adult modifications in 
most Palaeozoic ammonoids (with some rare exceptions like 
Prolobites) might suggest determinate growth and terminal 
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septal crowding is rare to begin with and would also not be 
picked up if the specimens died before actually showing it.

Changes in the environment
Unpropitious conditions caused a periodic loss of oxygen 
in the water leading to a lack of food; presumably, sep-
tal crowding occurs because the conditions became poor 
or lethal (Bucher et al., 1996; Kraft et al., 2008). Decrease 
in septal spacing without obvious injuries or pathologies 
has also been attributed to environmental perturbations 
(water temperature, pH, salinity, lack of food) in modern 
Spirula spirula (Hoffmann et al., 2018a, 2018b).

Injuries and pathologies
Septal approximation was found to be associated with 
severe shell injuries (e.g. Keupp, 2012, p. 124). Bucher 

et al. (1996) gave three reasons for septal crowding; the 
cessation of forward movement of the soft body due 
to an injury, the interruption of the normal cycle of 
chamber formation and the need for additional weight 
to counteract the effect of positive buoyancy result-
ing from the loss of shell material. However, as Chirat 
et  al. (2008) pointed out, the last reason is not con-
vincing, since Nautilus, after a serious injury at the 
aperture edge, can delay the formation of new cham-
bers by two months until the lost shell material is com-
pletely replaced (Ward, 1985; Ward & Chamberlain, 
1983) but likely not longer (compare Keupp & Riedel, 
1995). Klug et  al. (2004) showed how ceratitid ammo-
noids reacted to excess weight due to bivalve epizoans 
by slowing down apertural growth and thus shorten-
ing the body chamber. Thus, the alignment of the septa 
occurs long after the sudden decrease in density. Fur-
thermore, epizoans, such as bivalves, branching colo-
nial organisms and tube worms growing on the external 
shell, might have affected the buoyancy of the ammo-
nite (Checa et al., 2002; Ramming et al., 2018; Stilkerich 
et al., 2017; Tajika et al., 2015).

In addition, at least some papers indicate that ammo-
noids (De Baets et  al., 2013b) as well as some extinct 
groups of nautiloids (Mironenko, 2018; Turek & Manda, 
2016) and the modern coleoid Spirula spirula (Hoffmann 
et al., 2018a, 2018b) show changes in septal distance and/
or shape associated with injuries and pathologies attrib-
uted parasitic infestations (reviewed in De Baets et  al., 
2021). De Baets et  al., (2013b, 2015a, 2015b, 2015c) did 
not find a general correlation between septal spacing 
and spacing of structures interpreted to reflect repeated 
parasitic infestations in a specimen of the Early Devonian 
ammonoid Ivoites opitzi. However, these authors could 
demonstrate that the parasitic pits were associated with 
an abnormal development of the aperture/body cham-
ber as well as often coincided with a temporary drop in 
septal spacing. A temporary decrease in septal spacing 
following a chamber with a blister pearl interpreted to 
indicate parasitism was also reported in modern Spirula 
(Hoffmann et  al., 2018a, 2018b). Parasitism might also 
lead to changes in the shape of the septa and the course 
of the suture line which further support the link between 
apertural growth and septal spacing (e.g. temporary 
crowding). This has been well documented for Palaeozoic 
nautiloids (Mironenko, 2018; Turek & Manda, 2016). The 
temporary drop in septal spacing is often restricted to 1 
or a couple septa at maximum. For the rest of the manu-
script, we will focus on changes in septal spacing which 
persist longer and are not associated with obvious injury 
or pathology.
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Fig. 2 The stratigraphic position of the studied material
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Material and methods
Material
We examined a total of more than 620 specimens of late 
Givetian to latest Viséan (Devonian and Carbonifer-
ous) ammonoids from localities in Morocco and Algeria 

with regard to their septal distances (Additional file  1). 
These specimens represent 178 species of all Palaeozoic 
ammonoid suborders (except the Ceratitina). Of these 
specimens, 469 were used for our analyses; the additional 
specimens (e.g. 36 specimens of the species Pseudopro-
beloceras nebechense) were used to study intraspecific 
variation.

For our study of a satisfactorily high number of speci-
mens, we had to focus on material in internal mould 
preservation. All the material is likely to have been 
originally preserved as pyrite-filled internal moulds and 
was later transformed into limonite or haematite (Frey 
et  al., 2019). The original host rock for these materials 
was always a dark shale, but not black shale in the strict 
sense. Nevertheless, it is quite possible that at the time 
and place where these sediments were deposited, there 
was a certain lack of oxygen in the lower part of the water 
column.

The material comes from several localities and the fol-
lowing stratigraphic units (in ascending order) (Fig. 2):

 1. Hassi Nebech, 19  km east-northeast of Taouz 
(Anti-Atlas, Morocco); late Givetian Pharciceras 
assemblage: septal distances of 215 specimens rep-
resenting the suborders Gephuroceratina, Pharcic-
eratina and Tornoceratina (Bockwinkel et al., 2013) 
were measured. Of these, the conch parameters 
were also determined for 71 specimens.
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Fig. 3 Measurement of septum distances in the studied ammonoids
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Fig. 4 Ontogenetic trajectories representative for the six distinguished groups with different modes of septal distance, shown in specimens 
of Late Tournaisian ammonoids from Oued Temertasset (Algeria). Phragmocone diameters in the lower right boxes. Grey dots = empirical 
data; black dots = three neighbouring data points averaged. A Group 1: Jerania persimilis Korn, Bockwinkel & Ebbighausen, 2010a; specimen 
MB.C.18940.1. B Group 2: Muensteroceras multitudum Korn, Bockwinkel & Ebbighausen, 2010a; specimen MB.C.18992.1. C Group 3: Helicocyclus 
inornatus Korn, Bockwinkel & Ebbighausen, 2010a; specimen MB.C.19035.1. D Group 4: Pericyclus intercisus Korn, Bockwinkel & Ebbighausen, 2010a; 
specimen MB.C.18862.2. E Group 5: Pericyclus circulus Korn, Bockwinkel & Ebbighausen, 2010a; specimen MB.C.18862.4. F Group 6: Temertassetia 
temertassetensis Korn, Bockwinkel & Ebbighausen, 2010a; specimen MB.C.18865.1
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 2. Madène el Mrakib, 27.5  km south-east of Fezzou 
(Anti-Atlas, Morocco); middle Famennian Pri-
onoceras assemblage; 61 specimens in total, mainly 
prionoceratids, tornoceratids and platyclymeni-
ids (Klein & Korn, 2014; Korn et  al., 2014, 2015a, 
2015b, 2016a, 2016b).

 3. Aguelmous, 5 km north-east of Fezzou (Anti-Atlas, 
Morocco); late Famennian Mimimitoceras assem-
blage; 60 specimens in total, mainly prionoceratids, 
tornoceratids and cymaclymeniids (Klein & Korn, 
2014; Korn et al., 2015a, 2015b, 2016a, 2016b).

 4. Mfis, 16 km north-northeast of Taouz (Anti-Atlas, 
Morocco); Early Tournaisian Gattendorfia assem-
blage; 20 specimens in total, predominantly pri-
onoceratids and a few early prolecanitids (Bock-
winkel & Ebbighausen, 2006).

 5. Aguelmous, 5  km north-east Fezzou (Anti-Atlas, 
Morocco); Early Tournaisian Gattendorfia assem-
blage; 28 specimens in total, predominantly pri-
onoceratids and a few early prolecanitids (Ebb-
ighausen & Bockwinkel, 2007).

 6. Gara el Kahla, 35  km south-west of Timimoun 
(Gourara, Algeria); Early Tournaisian Gattendorfia 
assemblage; 15 specimens in total, predominantly 
prionoceratids and a few early prolecanitids (Ebb-
ighausen et al., 2004).

 7. Sebkha de Timimoun, 15  km west-southwest of 
Timimoun (Gourara, Algeria); Early Late Tournai-
sian Pericyclus assemblage; 13 specimens in total, 

with prionoceratids, pericyclids, muensteroceratids 
and prolecanitids (Korn et al., 2010a, 2010b).

 8. Oued Temertasset, 140  km east-southeast of In 
Salah (Mouydir, Algeria); Early Late Tournaisian 
Pericyclus assemblage; 125 specimens in total, with 
prionoceratids, pericyclids, muensteroceratids, 
goniatitids and prolecanitids (Korn et  al., 2010a, 
2010b).

 9. Sebkha de Timimoun, 10  km west-southwest of 
Timimoun (Gourara, Algeria); Early Viséan Bollan-
doceras assemblage; 40 specimens in total, predom-
inantly muensteroceratids (Bockwinkel et al., 2010).
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assemblages
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 10. Chebket el Hamra, 2 km west-northwest of Touissit 
(Jerada Basin, Morocco); Late Viséan Arnsbergites 
and Lusitanoceras assemblages; 39 specimens in 
total, predominantly represented by Arnsbergites 
and Lusitanoceras (Korn & Ebbighausen, 2008).

Methods
We measured septum distances (which define the phrag-
mocone chamber lengths) as angular degrees, starting 
with the last preserved septum, which is often also the 
last before the body chamber, and continuing towards the 
protoconch (Fig. 3). Using this method, size-independent 
values can be obtained for all specimens. Of course, it 
has to be taken into account that the length of the cham-
bers in angular degrees has a certain dependence on the 
length of the body chamber and the total length of the 
coiled spiral; rapidly expanding conchs (as in Nautilus) 
should therefore have shorter body chambers (Klug, 
2001; Saunders & Shapiro, 1986) and tend to have shorter 
chambers of the phragmocone. However, this does 
not play a role in explaining rapidly changing chamber 
lengths during the ontogeny of individuals.

The different ontogenetic trajectories of septal spac-
ing can be classified (Kraft et al., 2008), although not all 
specimens can be unambiguously assigned in one of the 
groups owing to the fact that the boundaries between the 
groups that cannot be sharply delineated (Fig. 4).

Group 1: Steady growth—without reduction of septal 
distances and without distinct septal crowding in the last 
half volution (Fig. 4A).

Group 2: Minor changes—with rather steady septal dis-
tances with minor fluctuations in the first five segments 
of 60° length, followed by slight septal crowding in the 
last segment (Fig. 4B).

Group 3: Terminal decrease—without or with gradual, 
slow reduction of septal distances throughout the last 
whorl ending in septal crowding (Fig. 4C).

Group 4: Continuous decrease—with conspicuous 
reduction of septal spaces over a growth period, such as 
one whorl (Fig. 4D).

Group 5: Escalating decrease—with slow (sometimes 
distinct) reduction of septal distances in the first three 
segments; slow continuous reduction in segments 4 and 
5, followed by drastic septal crowding in the last segment 
of 60° length (Fig. 4E).

Group 6: Regular oscillation—with continuous change 
from increasing to decreasing distances at regular inter-
vals (Fig. 4F).

Results and discussion
Modes of septal spacing
Most of the specimens from ten stratigraphic intervals 
could be assigned to one of the six categories defined 
above; only a few specimens could not be assigned. A 
quarter of the specimens belong to group 1, i.e. to the 
group without any significant reduction in septal dis-
tance; thus, reductions in chamber length are recognis-
able in nearly three quarters of the specimens. More 
than one third of the specimens belong to group 3, which 
show a continuous reduction on the last whorl of the 
phragmocone.

In the temporal succession of the assemblages stud-
ied, there is no trend in the frequency distribution of the 
groups (Fig. 5). This may mean that the most important 
taxonomic units (Gephuroceratina and Pharciceratina in 
the Givetian, Tornoceratina in the Famennian and Early 
Tournaisian, Goniatitina in the Late Tournaisian and 
Viséan) do not differ with respect to their characteristics 
in the length of the phragmocone chambers. This find-
ing is supported by the proportions of the groups within 
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the large systematic units (Fig. 6). All suborders, with the 
exception of the Cyrtoclymeniina, show very similar pro-
portions of the groups; no trend is discernible.

Septal distances and maturity
We analysed 469 specimens, in which septal distances of 
at least one half volution were measured and calculated 
a simple crowding index by subtracting the mean angu-
lar degrees of the last three septa from the mean angu-
lar degrees of the last half volution of the phragmocone. 
Negative values therefore indicate septal crowding. Of 
these 469 specimens, 62 (13%) show an increase in sep-
tal distances; 85 specimens (18%) show an insignificant 
variation between + 0.5 and − 0.5 and thus almost no 
change, while 322 specimens (69%) show a variation of at 
least − 0.5. This means that, in our material, death was 
more than five times as frequent in a period of septal 
approximation. It can be assumed that most of the speci-
mens died during an interval of adverse conditions before 
reaching their maximum size, which is well known to be 
larger than in the studied specimens. As will be shown 
below, there is no obvious relationship between conch 
size and septal density (Fig. 7), although an ontogenetic 
decrease in chamber length can be observed in the tra-
jectories of numerous specimens.

Septal crowding at the end of conch growth in ammo-
noids is a phenomenon that has been known for a long 
time. Already von Buch (1849, p. 8) stated in his descrip-
tion of Ceratites nodosus (Fig. 1): ‘The number of cham-
bers is very considerable; they are very close together, 

and more so the closer they come to the end of the 
whorls, which is common to all ammonites’. Particu-
larly in the study of ceratitid ammonoids, the idea that 
the completion of growth is indicated by crowding of the 
last septa has become entrenched (e.g. Klug et al., 2005; 
Riedel, 1916; Urlichs, 2006). This does not only apply to 
Triassic species; already late Permian representatives of 
the order Ceratitida show septal crowding, together with 
simultaneous attenuation of sculpture, as a rather reliable 
mature modification (Korn et al., 2016c). Only the com-
bination of several mature modifications permits to iden-
tify maturity in incomplete specimens and the calculation 
of the maximum conch size (Kiessling et al., 2018).

In Palaeozoic ammonoids, adult modifications are 
rarer and far less pronounced than in Mesozoic forms. 
A compilation was given by Davis (1972) and Klug et al. 
(2015a,2015b,2015c); it is striking that the majority of 
the Palaeozoic examples described have a Permian age. 
The modifications frequently affected the adult apertural 
margin of the conchs. However, little is known about the 
spacing of the septa in these examples.

In Devonian ammonoids, changes in the aperture mar-
gin have rarely been recognised. However, two exam-
ples (Wocklumeria, Prolobites) with very conspicuous 
modifications of the terminal apertural margin have 
been reported (Ebbighausen & Korn, 2007; Walton et al., 
2010). Both are impressive examples of a morphogenetic 
countdown (Seilacher & Gunji, 1993); the septal crowd-
ing is obviously caused by a slowdown of growth at the 
apertural margin. However, even the earliest ammonoids, 
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such as anetoceratids, show mature characters, such as 
loose coiling and umbilical egression (De Baets et  al., 
2013a, 2013b; Klug et  al., 2015b) linked with a small 
decrease in septal spacing (De Baets et al., 2013b). Umbil-
ical egression also occurs in agoniatitids, which some-
times form strong constrictions at the terminal aperture 
(Klug, 2001).

Prolobites is a pachyconic or globular representative 
of the middle Famennian prionoceratids. The conchs 
of the genus are characterised by two deep constric-
tions; the last has a position close to the terminal aper-
ture and the first exactly one whorl before it and thus 
more or less below. Complete specimens of Prolobites 
were illustrated by Korn et  al. (1984), showing that the 
ventral shell growth moves away from the whorl spi-
ral after the second constriction. Bogoslovsky (1969) 
showed longitudinal sections with notable differences in 
the spacing of septa. While the last whorl of the phrag-
mocone shows very wide spacing of the septa of nearly 

90 angular degrees (assuming that all septa are actually 
preserved), the septa spacing decreases rapidly to 28° just 
before the first constriction. The last five septa are finally 
in the area of the first constriction; they are very crowded 
with distances of about 7 angular degrees. Walton et al. 
(2010) discussed the possibility of terminal spawning 
behaviour of this genus, which might provide rare sup-
port for evidence for determinate growth and likely death 
after spawning (?semelparity) in at least some Palaeozoic 
ammonoids.

Wocklumeria and Parawocklumeria belong to the cly-
meniids (ammonoids with dorsally situated siphuncle) of 
the late Famennian and also has pachyconic or globular 
conchs. The inner whorls appear trilobed due to con-
spicuous constrictions, while the adult whorl is normally 
coiled in Wocklumeria. In Parawocklumeria the outer 
whorl is also three-lobed due to constrictions. Ebb-
ighausen and Korn (2007) showed that very conspicu-
ous crowding of the last septa is visible in both genera, 
especially in Wocklumeria. Similar to Prolobites, the last 
five septa are extremely densely crowded; this occurs in 
parallel with a very clear simplification in the course of 
the suture line and a weak migration of the siphuncle 
towards the whorl centre.

Here we explicitly refrain from calling septal crowd-
ing at the end of conch growth ‘adult septal crowding’. 
This is mainly due to the fact that the specimens under 
study do not show any additional indicators of maturity, 
such as changes in the shape of the aperture or sculpture. 
As will be explained below, intermediate periods of sep-
tal crowding are common in the specimens we studied. 
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Therefore, it is quite possible that the death of the speci-
mens occurred during any of these periods.

Septal distances and morphology
Our data set with over 470 specimens measured with 
respect to septal distance and conch morphology shows 
a weak correlation (R2 = 0.173) between the conch width 
index (whorl width/conch diameter) and the distance of 
the septa (Fig. 8).

There are rather large differences in the correlation of 
conch geometry and septal distance between the sub-
samples. For example, the assemblage from Oued Temer-
tasset shows an R2 value of 0.108 (Fig. 9) and that from 
Hassi Nebech even of 0.294 (Fig. 10). Smaller subsamples 
then give a mixed picture: in the assemblage from Oued 
Temertasset (Fig. 9), the prionoceratids show the strong-
est correlation (R2 = 0.506) and the muensteroceratids 
the weakest (R2 = 0.041). In the Hassi Nebech assem-
blage, the gephuroceratids show the highest correlation 
(R2 = 0.571), while the pharciceratids (R2 = 0.179) and the 
tornoceratids (R2 = 0.063) correlate less clearly (Fig. 10). 
In all cases there is a positive correlation of conch width 
index and septal distance.

An ontogenetic decrease in septal distances can be 
observed in the trajectories of numerous specimens. For 
example, almost all specimens of the Early Carboniferous 
genus Imitoceras (Prionoceratidae, Tornoceratina) show 
such a reduction in chamber length (Fig. 11).

The representatives of the Tornoceratina are suitable 
objects for investigating possible correlations between 
chamber length and the course of the suture line for the 
following reasons: many representatives of the subor-
der possess a very similar discoidal conch with a closed 
umbilicus. In the course of their evolutionary history, 
many forms retained the conservative conch morphol-
ogy, while the suture line acquired greater complexity 
with increasing numbers of lobes and saddles (Korn et al., 
2016a, 2016b, 2016c). However, there is no clear trend 
in the morphological evolution from tornoceratids with 
simple suture lines (Gundolficeras) to those with more 
complex suture lines (e.g. Posttornoceras, Discoclymenia); 
a pronounced covariation between chamber length and 
suture line complexity probably does not exist (Fig. 12).

Some studies have identified relationships between 
conch morphology and septal spacing. Such a depend-
ence was suggested by Bucher et  al. (1996); they saw 
the greater variability of ammonoid morphology, when 

compared to Nautilus, as an indication of more vari-
able septal spacing in ammonoids. A sudden increase in 
septal spacing was found in various ammonoids at the 
beginning of the neanoconch (Arai & Wani, 2012; Bucher 
et al., 1996; Kulicki, 1974), followed by a decrease at the 
end of the neanoconch. Matyja and Wierzbowski (2000) 
found a correlation of ornamentation and septal spac-
ing, where tighter septal spacing correlates with irregular 
ornamentation. Saunders (1995) postulated that forms 
with thicker shells have fewer septa, while De Baets et al. 
(2015b) hypothesised that evolute forms have larger 
septal spacing than involute forms. This might partially 
depend on the method how septal spacing is measured.

Furthermore, several researchers associated crowded 
septal spacing with growth changes (Naglik et al., 2015). 
Growth spurts (Bucher et  al., 1996), rhythmic slowing 
down of growth (Hoffmann & Keupp, 2015), rhythmically 
changing speed of secretion with growth interruptions 
(Kraft et  al., 2008) and slower accretion at the aper-
ture (Korn & Titus, 2006) were listed as causes of septal 
crowding.

Septal distances and ontogeny
For the analysis of ontogenetic changes in septal density, 
we took three steps:

Analysis of the entire data set
The bivariate plot of phragmocone diameter and septal 
spacing (on the last half whorl) of all analysed specimens 
shows no evidence of a significant decrease in septal 
spacing with increasing size (Fig. 7), at least between 10 
and 30 mm conch diameter, a size interval in which most 
of the examined specimens belong.

Analysis of smaller subsamples
A decrease of septal distances with larger size can also not 
be recognised when looking at smaller samples, e.g. the 
assemblages of Hassi Nebech (Fig. 13) and Oued Temer-
tasset (Fig. 14). Even when smaller taxonomic units, such 
as subfamilies or genera, are considered individually, no 
universal pattern can be discerned that would indicate a 
reduction in septal distances during ontogeny, although 
an ontogenetic trend towards shorter septal distances 
occurs in several of the subsamples. The study of 40 
specimens of Pseudoprobeloceras nebechense from Hassi 
Nebech also showed that septal spacing remains constant 
between 10 and 30 mm conch diameter (Fig. 15).

(See figure on next page.)
Fig. 14 Bivariate plots of phragmocone diameter and septal distance in the Late Tournaisian assemblage of Oued Temertasset (grey background 
dots represent the entire sample). A, D, G, J, M Septal spaces of all septa in the last half volution. B, E, H, K, N Septal spaces of the last three septa. 
C, F, I, L, O Difference in the septal distances of the last three septa all septa in the last half volution. A–C Complete assemblage. D–F Family 
Prionoceratidae. G–I Family Pericyclidae. J–L Family Muensteroceratidae. M–O Family Goniatitidae
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Analysis on the specimen level
A general decrease in septal distances is not evident in 
the individual ontogenetic trajectories of the septum 

distances in P. nebechense (Fig.  15). Almost all of the 
examined specimens show conspicuously wavy trajec-
tories but maintain stable values of septal distance. The 
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Fig. 15 Ontogenetic trajectories of septal distances in nine specimens of Pseudoprobeloceras nebechense (Bensaïd, 1974) from Hassi Nebech, 
specimens MB.C.30284.1-9. Respective phragmocone diameters (in mm) in the bottom boxes
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oscillation is in the range of about five angular degrees 
and the wavelength is often about 180° (Fig.  15). The 
undulating trajectories also indicate that the specimens 
in question experienced three to five intervals of septal 
displacement during the formation of two whorls, only 
the last of which was either fatal itself or paralleled pos-
sibly maturity and (subsequent) death of the animal.

Another species of Hassi Nebech, Taouzites taouzen-
sis, shows overall similar trajectories, but differs from P. 
nebechense in the sometimes much stronger oscillation of 
up to about 15° (Fig. 16).

It has long been known that septal spacing in ammo-
noids changes during ontogeny. von Buch (1832, p. 153) 
already stated: ‘The number of chambers increases with 
age in all ammonites’. Several studies (e.g. Arai & Wani, 
2012; Bucher et al., 1996; Iwasaki et al., 2020; Kraft et al., 
2008; Landman, 1987; Zell & Stinnesbeck, 2016) showed 
a distinct ontogenetic pattern in the septal distance in 
ammonoids. Apart from a partly significant decrease of 
the angular degree at the end of the neanic stage, all spec-
imens show an oscillating pattern in the trajectories.

Septal distances and phylogeny
The extensive material allowed to study possible dif-
ferences in chamber length among the suborders 
Gephuroceratina, Pharciceratina, Tornoceratina, Gonia-
titina and Prolecanitina. This led to the result that these 
taxonomic units differ only slightly in the proportions of 
the distinguished modes of septal spacing; the percent-
age of group 1 (with rather stable septal distance) varies 
between 20 and 30 and the percentage of group 3 (with 
reduction of septal distances throughout the last whorl 
ending in septal crowding) between 30 and 40. Only 
the suborder Pharciceratina differs from the others in a 
higher percentage of group 6 with regular oscillations of 
septal distances (Fig. 6). The strongly deviating percent-
ages of the clymeniids was possibly caused by sampling 
effects; due to the mostly fragmentary preservation of 
many species, particularly those with widely umbilicate 
conchs that have a lower preservation potential, the data 
set was therefore excluded from more detailed analyses.

To clarify possible within-clade variation, we have sub-
divided the long-lived subfamilies Prionoceratinae and 
Acutimitoceratinae into four temporal units, from bottom 
to top middle Famennian, late Famennian, early Tournai-
sian and late Tournaisian (Figs. 17, 18). All species of these 
subfamilies share a similar adult globular involute conch 

shape with a closed umbilicus (compare Korn 2010); they 
differ in the width of the conchs and in the expansion of the 
whorls. Normally, these two characteristics display covaria-
tion: slender conchs tend to have higher apertures and thus 
higher coiling rates. The analysis shows an increase in cor-
relation over evolutionary history: the dependence of sep-
tal distances on conch shape increases significantly in the 
Prionoceratinae between the middle Famennian and late 
Tournaisian, from R2 = 0.035 to R2 = 0.506.

In parallel, the correlation of the coiling rate (whorl 
expansion rate) with the septal distances also increases 
(from R2 = 0.001 to R2 = 0.528). Here the correlation is 
negative; a higher coiling rate is correlated with lower 
septal distances. However, this pattern can be explained 
by the fact that, as in many ammonoids, there is a corre-
lation between conch width and coiling rate; more slen-
der forms tend to have higher apertures and thus higher 
coiling rates.

Septal distances and environment
The vast majority of the studied specimens originate 
from shale formations and therefore represent a per-
haps low-oxygenated area of the shelf seas. All specimens 
from North Africa are preserved as limonite or haematite 
internal moulds. Thanks to this preservation, it was pos-
sible to study such a large number of specimens without 
time-consuming preparation. However, a possible disad-
vantage of this material could therefore be that the ani-
mals have not been exposed to normal marine oxygen 
conditions during their lifetime and therefore show spe-
cial patterns in the septal formation that deviate from the 
normal case (e.g. Clausen, 1969).

To test for such a possible divergence, we examined and 
compared morphologically similar time-equivalent spe-
cies of the genus Imitoceras from the Argiles de Teguen-
tour of Oued Temertasset and the Rockford Limestone 
of Indiana. The material from the two formations differs 
in the size of the specimens; while the diameters of the 
phragmocones of I. ixion from the Rockford Limestone 
range from 60 to 95 mm, the specimens of I. dimideum 
from the Argiles de Teguentour rarely reach 50  mm. 
However, these size differences are not reflected in the 
ontogenetic trajectories of septal distance; the majority 
of specimens show quite little variation during ontog-
eny. A common feature is the mostly almost continuous 
decrease in septal spacing and the weakly undulating 
course of the trajectories (Fig. 11).

Fig. 17 Bivariate plots of conch parameters and septal spacing (of the last half volution) in the family Prionoceratidae (grey background dots 
represent the entire sample). A, D, G, J, M Conch width index (ww/dm) and septal spaces. B, E, H, K, N Whorl width index (ww/wh) and septal 
spaces. C, F, I, L, O Whorl expansion rate (WER) and septal spaces. A–C All representatives. D–F Late Tournaisian assemblage. G–I Early Tournaisian 
assemblage. J–L Late Famennian assemblage. M–O Middle Famennian assemblage

(See figure on next page.)
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At least the comparison of these two samples does not 
indicate a dependence of the lithofacies of the embedded 
ammonoids and their chamber length; the ammonoids 
from the well-oxygenated Rockford Limestone do not dif-
fer from those from the possibly less-oxygenated Argiles 
de Teguentour. This could indicate that both lithofacies 
provided similar environmental conditions for the ammo-
noids, at least at times.

Conclusions
The phenomenon of varying septal distances (i.e. vary-
ing length of phragmocone chambers measured in angu-
lar degrees) in ammonoids is known for a long time and 
has already been explained by a number of hypotheses. 
Both internal factors (changes in conch shape and orna-
ment, changes in lifestyle, pathologies) and external fac-
tors (change in the environment, predation pressure) or 
a combination of both have been taken into account. We 
measured and analysed the septal distances of about 620 
ammonoid specimens of the late Givetian (Middle Devo-
nian) to the latest Viséan (Early Carboniferous) with 
respect to the various postulated reasons for the variation 
of septal distances.

Chamber length and conch morphology only show a 
weak correlation between the whorl width/ conch diam-
eter ratio and the distance of the septa. Specimens with 
stouter conchs tend to have wider septal distances. The 
analysis of possible influences (differences in morphology, 
ontogeny and phylogenetic position) on chamber length in 
ammonoids showed only little correlation. Neither phylo-
genetic affiliation nor differences in conch shape and the 
course of the suture line can be held responsible for the 
striking ontogenetic changes in the length of the phragmo-
cone chambers. It is therefore doubtful that morphologi-
cal differences directly or indirectly controlled the distance 
between the septa.

Changes in spacing between septa are not considered 
here as direct active responses of the animal to changes in 
its conch geometry, disturbances in the availability of food 

and oxygen, changes in life habit as well as injuries and 
pathologies. Rather, we present here the hypothesis that 
the formation of septa is a passive process subject to a tem-
poral mode. According to this, new septa were secreted at 
more or less regular temporal intervals and not correlated 
with the pace of shell growth at the aperture. This means 
that any disturbance, slowing or interruption of shell 
growth at the aperture, whether caused by the formation 
of coarse ornamentation, injury, adverse environmental 
conditions or advanced age of the individual, will result in 
the crowding of septa. This means that septal spacing was 
influenced by environmental change, but only indirectly 
via growth change at the aperture and thus body chamber 
growth.

The fact that many specimens of ammonoids show 
crowded septa in front of the body chamber can only 
partly be interpreted as a mature character. Septal crowd-
ing is insufficient to identify maturity in the absence of 
other mature modifications. Mature growth is only docu-
mented when other features, like conch size, changes in 
the shape of the aperture, modifications of the sculpture, 
growth line strength and spacing, or umbilical width, are 
present in parallel. Our study showed that considerable 
fluctuations in septal spacing were evident in the major-
ity of specimens (about 65%) and that intermediate septal 
crowding was very common. It is likely that individuals 
frequently recovered from these episodic disturbances and 
returned to normal septal spacing. However, many indi-
viduals may also have died during such periods, sometime 
before reaching the final size of the conch.

Consequently, the great abundance of irregularities in 
septal spacing documents fluctuations in apertural conch 
growth. Septal spacing had to follow to maintain neu-
tral buoyancy.  Irregular septal spacing indirectly reflects 
adverse conditions, which influenced the rate of shell for-
mation at the aperture. Consequently, it is conceivable that 
the higher metabolism, which was proposed for ammo-
noids compared to nautiloids (Jacobs & Landman, 1993; 
Tajika et al., 2020), could indeed have altered shell secre-
tion at the aperture with the consequent changes in septal 
spacing.
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