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Abstract 

Trace fossils occur in several strata of the Devonian and Carboniferous of the eastern Anti-Atlas, but they are still 
poorly documented. Here, we describe a fossil swimming trace from strata overlying the Hangenberg Black Shale 
(correlation largely based on lithostratigraphy; Postclymenia ammonoid genozone, ca. 370 Ma old). We discuss the 
systematic position of the tracemaker and its body size. This ichnofossil is important for three main reasons: (1) it is 
considered here to be the first record of Undichna from the Devonian of Gondwana, as far as we know; (2) it is the old-
est record of vertebrate trace fossils from Africa; (3) it provides a unique window into the behaviour of Late Devonian 
fishes for which body-fossils cannot provide direct evidence. Further, we put this discovery into the macroecological 
context of the palaeoenvironment following the Late Devonian Hangenberg biodiversity crisis.
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Introduction
Swimming traces of fishes such as Undichna are aston-
ishingly rare, especially when taking into account that 
many of these animals live close to the sediment sur-
face. Even more astonishingly, the oldest records of the 
ichnogenus Undichna date back to the Late Silurian 
(Knaust & Minter, 2018: U. unisulca). However, this ich-
notaxon, U. unisulca, is not undulating like all other ich-
nospecies of Undichna; these ichnofossils range among 
the oldest published records of vertebrate traces apart 
from coprolites. Currently, the oldest sinusoidal-shaped 
Undichna and similar fish swimming traces are recorded 
from the Early Devonian (Morrisey et  al., 2004; Trewin 
& Davidson, 1996; Wisshak et  al., 2004), whereas the 
origin of vertebrates and fish-like chordates goes back 
much further (e.g., Brazeau, 2009; Brazeau & Friedman, 

2015; Janvier, 1998; Zhu et  al., 2013). While early chor-
dates such as the Cambrian Yunnanozoon, Haikouich-
thys and Pikaia (Chen et al., 1995; Shu et al., 1996, 1999) 
appear unlikely to have produced swimming traces such 
as Undichna, many early gnathostomes with paired fins 
(e.g., Botella et  al., 2007; Choo et  al., 2014, 2017; Zhu 
et al., 2009) could well have performed swimming move-
ments including body undulation with fins trailing on the 
sediment surface.

Even in the middle Palaeozoic or in younger strata, 
described occurrences of Undichna and similar ichno-
genera such as the amphibian traces Lunichnium and 
Serpentichnus are rare. Both latter ichnotaxa display a 
combination of continuous and/ or discontinuous sinu-
soidal trails associated with scattered partial or com-
plete footprints (Braddy et  al., 2003; Minter & Braddy, 
2006; Turek, 1989; Walter, 1983). Such ichnofossils are 
known from the Carboniferous of Argentina (Buat-
ois & Mangano, 1994; Melchor & Cardonatto, 1998), 
Czech Republic (Turek, 1989, 1996), England (Higgs, 
1988), Spain (Soler-Gijon & Moratalla, 2001), and USA 
(Martin, 2003; Martin & Rindsberg, 2004; Martin et  al., 
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2010), the Permian of the Falkland Island (Trewin, 2000), 
South Africa (Anderson, 1970, 1976) and USA (Minter & 
Braddy, 2006), the Triassic of China (Lu & Chen, 1998; Lu 
et al., 2004), Germany (Simon et al., 2003), Italy (Todesco 
& Avanzini, 2008), and South Africa (Sciscio et al., 2020), 
the Jurassic of Germany (Schweigert, 2001) and USA 
(Gibert, 2001), as well as the Cretaceous of Spain (Gibert 
et al., 1999, 2000, 2001). Although this list is likely incom-
plete, we assume that not many references are missing 
here; this shows the scarcity of records, which might be 
partially to blame on the low number of active ichnolo-
gists. Consequently, every new record of Undichna is 
interesting and relevant.

The ichnogenus Undichna was formally introduced by 
Anderson (1976) for a Permian ichnofossil from South 
Africa. The ichnospecies included in Undichna consist of 
one or a combination of several sinusoidal furrows, which 
are commonly preserved as fillings, i.e. as hyporeliefs [for 
a definition see, e.g., Minter and Braddy (2006)]. More 
recently, Minter and Braddy (2006) published an ichno-
taxonomic revision of the ichnogenus Undichna. They 
reduced the number of valid ichnospecies to nine: U. 
simplicitas Anderson, 1976, U. bina Anderson, 1976, U. 
insolentia Anderson, 1976, U. britannica Higgs, 1988, U. 
consulca Higgs, 1988, U. unisulca Gibert et al., 1999, U. 
quina Trewin, 2000, U. trisulcata Morrissey et al., 2004, 
U. septemsulcata Wisshak et  al., 2004, and U. unisulca 
Knaust & Minter, 2018. Their revised ichnotaxonomy 
uses the number of furrows, how they undulate (in paral-
lel, crossing), their continuity or discontinuity, paired or 
unpaired, and the depth of the furrow. As shown by Bain-
bridge (1958, 1963), Videler (1993) and Wisshak et  al. 
(2004), amplitude, wavelength and relative course of the 
furrows allow to estimate the body size of the tracemaker.

Here, we describe a well-preserved Undichna from the 
latest Devonian of the southern Tafilalt region (Eastern 
Anti-Atlas, Morocco). In Morocco, sediments from all 
main global events of the Late Devonian have been docu-
mented. For example, deposits of the Kellwasser Events 
are excellently exposed (e.g., Wendt & Belka, 1991) and 
have yielded important data to improve our understand-
ing  of this mass extinction event (Buggisch, 1991; Bug-
gisch & Joachimski, 2006; Hüneke, 2005). Similarly, the 
Famennian Annulata-Events (e.g., Hartenfels & Becker, 
2016; Korn, 2004) as well as the Hangenberg Event are 
quite well studied in Morocco (Kaiser et al., 2006, 2011, 
2013; Klug et al., 2016). Nevertheless, the outcrops are so 
vast and the strata locally so fossiliferous that they will 
yield plenty of materials for future studies for the next 
decades if not centuries.

The specimen presented here is interesting because 
the host layers overlie the supposed chronostratigraphic 
equivalent of the German Hangenberg Black Shale and 

are likely correlatable with the Hangenberg Sandstone. 
The Hangenberg Event (e.g., Algeo et  al., 2001; Kaiser 
et al., 2006, 2011; Klug et al., 2016; Sandberg et al., 2002) 
particularly affected the vertebrate communities (Frey 
et al., 2018; Sallan & Galimberti, 2015). In many regions 
worldwide, a combination of a black shale (Hangenberg 
Black Shale) and a sandstone (Hangenberg Sandstone) is 
found. This has been interpreted (e.g., Kaiser et al., 2011) 
as a rapid change from a eustatic transgression (sedimen-
tation of the Hangenberg Black Shale) to a regression 
(Hangenberg Sandstone), although, at least in Morocco, 
the Hangenberg Black Shale locally contains algae and 
other indicators of shallow water (Klug et  al., 2016). 
According to the absence or extreme scarcity of verte-
brate remains, the term Romer’s Gap was introduced 
for the interval between the Hangenberg Event and the 
late Visean because of the seeming lack (and actual scar-
city) of tetrapod fossils (Coates & Clack, 1995; Romer, 
1956; Smithson et al. 2012). However, vertebrate remains 
are also extremely scarce in the interval between the 
Hangenberg Black Shale [Postclymenia ammonoid geno-
zone, middle praesulcata conodont zone, ca. 360  Ma; 
Becker et al. (2020); Kaiser et al. (2011)] and the end of 
the Carboniferous sedimentary succession in the east-
ern Anti-Atlas in the early Serpukhovian (Klug & Pohle, 
2018; Klug et al., 2006).

Material and methods
The single specimen described here was discovered 
and excavated by the miner and self-taught palaeon-
tologist Mohamed Mezane near his home village El 
Khraouia. It is stored at the Paläontologische Institut 
und Museum der Universität Zürich with the number 
PIMUZ A/I 5060. The locality (N30.968449283419947, 
W-4.037403017377474) lies 1  km south of El Khraouia 
(also transcribed as Lahkraouia), about 15  km south of 
Merzouga and 7.8  km north northwest of Taouz in the 
southern Tafilalt (Fig. 1).

The specimen was photographed under white light 
from different directions to maximize the visibility of 
the swimming trace. Additionally, the specimen was 
3D-scanned with an Artec Eva. The obtained data were 
processed with the software Artec 3D Studio 11.

Geological setting
Geomorphology
The ichnofossil slab was collected from a succession of 
finely clastic sediments, which is rich in trace fossils in 
this area. These sediments are fine-grained micaceous 
sandstones, which sometimes show some fine cross-
bedding. The clay content varies, which is reflected in 
lateral and vertical changes in lamination and thickness 
of the single layers. They are under- and overlain by even 
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Fig. 1  A Location map of the study area. B Geological map of Al Atrous region showing the trace-fossil locality (map extracted from Alvaro et al. 
(2014))
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finer clastics (clays and siltstones) and thus, they form 
elevations of strongly varying height and steepness. At 
the abandoned village Jebel Al Atrous, these strata form 
a rugged mountain, the Jebel Al Atrous (Tamazight lan-
guage for ‘goat mountain’), while northeast of the Jebel 
Amessoui and south of El Khraouia, they merely form 
low hills. The geomorphological appearance as moun-
tains in some places and very low hills in others is prob-
ably controlled rather by cementation and tectonics [dip, 
faults; cf. Baidder et  al. (2016)] than by sedimentary 
thickness, since the thickness appears to change only 
slightly laterally.

Stratigraphy
The Al Atrous area is dominated by the Ordovician 
claystone, sandstone and quartzite deposits of the Bani 
Group in the south-western part and the Devonian strata 
of the Erfoud, Tafilalt and Taouz Groups, which crop out 
in the centre of the Amessoui Syncline (Klug & Pohle, 
2018). There, the Devonian strata overlie conformably 
the Silurian clayey to carbonatic deposits of the lower 
Erfoud Group in northwest and southeast direction. The 
Tournaisian and Visean (Oued Znaïgui and Merdani 
Formations) covers the Devonian strata unconformably 
(Alvaro et al., 2014; Benharref et al., 2014). The Hangen-
berg Black Shale and Sandstone equivalents belong to the 
Taouz Group.

The Devonian deposits consist mainly of three formal 
stratigraphic units, which are from the base to the top: 
Lochkovian to Givetian Erfoud Group, Givetian to Mid-
dle Famennian Tafilalet Group, and the Late Famennian 
to Tournaisian Taouz Group (Fig. 2A). The latter is com-
posed of the Late Famennian Aoufilal Formation and the 
Tournaisian Oued Znaigui Formation (Fig. 2A).

The stratigraphic position of the ichnofossil described 
here is somewhat obscured by the absence of index fos-
sils, such as ammonoids or conodonts, nearby. Kaiser 
et  al. (2013: p. 83) reported findings of Acutimitoceras 
(Stockumites) directly above the Gonioclymenia Lime-
stone (Upper Member of the Tafilalt Group) at Al Atrous, 
which is about 5.5  km to the Northwest. Between El 
Khraouia and Al Atrous, the Devonian and Early Carbon-
iferous strata are quite well exposed and can be traced 
easily on, e.g., satellite images. According to Kaiser et al. 
(2013), about 210  m of thin-bedded clastics overlie the 
Gonioclymenia Limstone unit, which is then overlain by 
the Hangenberg Sandstone lithostratigraphic equiva-
lent, or at least its approximate correlate. At Al Atrous 
and El Khraouia, some tens to nearly 100  m higher in 
the sequence above the Undichna-bearing layer, ammo-
noid associations were documented by various authors 
(Becker et al., 2006; Kaiser et al., 2013; Korn et al., 2002, 
2003). These are, however, already of Middle Tournaisian 

age. Only near the mine Mfis (about 6 km to the North-
east), an Early Tournaisian assemblage was documented 
(Bockwinkel & Ebbighausen, 2006). When correlating the 
dated sections of Kaiser et al. (2013) with the outcrop at 
El Khraouia, the Undichna-bearing layers likely corre-
spond to the interval directly below the Devonian–Car-
boniferous boundary. This correlation was made based 
on the lithological correlation in the field, the geomor-
phological observation on satellite images and in the 
field, and the occurrences of index fossil-bearing layers, 
which, however, are quite far below and above the layer 
that yielded the ichnogenus Undichna. Accordingly, these 
clastic sediments at El Khraouia probably correlate with 
the Hangenberg limestone. In the Amessoui Syncline, 
the layers bearing Undichna and other ichnotaxa vary in 
facies and fossil content. At Al Atrous, brachiopods are 
quite abundant (Kaiser et al., 2013), while at El Khraouia, 
a well-preserved ichnofauna occurs in these layers (e.g., 
Lagnaoui et al., 2019).

Sedimentology
The ichnotaxon Undichna described herein comes 
from the uppermost part of the Aoufilal Formation of 
the Taouz Group of latest Famennian age (see above). 
Between El Khraouia and Filon 12 (Jebel Aoufilal), the 
Aoufilal Formation rests locally directly on the Early 
Givetian deposits (Erfoud Group), (Figs.  1B, 2A). The 
locality is located on the Jebel Aoufilal-ridge, which is the 
type locality of this lithological unit. It comprises a thick 
series (about 260 m) of hardly fossiliferous black shales, 
mudstones, thin-bedded siltstones and fine- to medium-
grained sandstones (field photo in Fig. 3) with occasional 
cross-bedding and ferruginous brown crusts, followed by 
a unit of sandstone rich in bioclasts. The top of the lat-
ter unit is characterised by one microconglomeratic bed 
intercalated with predominant sandstone layers rich in 
bioturbation and invertebrate trace fossils, which gener-
ally constitutes a level marked by detachment structures 
usually acting as slippery layers (Fig. 2B). The upper sur-
faces of the fine- to medium-grained sandstones preserve 
oscillation and current ripples, some sandstone layers 
show cross-bedding structures in the Tafilalt and Maïder 
regions.

Results
The ichnofossil-bearing slab described here is about 
0.98  m long and 0.69  m wide. It is broken into 16 sub-
rectangular plates. The slab consists of a cross-bedded, 
fine-grained sandstone with a brownish colour. The ich-
nofossils are on the underside (lower bedding surface), 
while wave-generated ripple marks cover the upper bed-
ding surface (not shown). The underside shows a wealth 
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Fig. 2  A Late Paleozoic stratigraphy subdivision of the South Tafilalt region, adapted from Álvaro et al. (2014) and Najih (2019); see more information 
on the log there. B Lithological section from the Al Atrous region with the stratigraphic position of ichnofossil-bearing strata
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of ichnofossils including long Diplichnites, several Ruso-
phycus and a few other ichnotaxa (Figs.  4, 5). Here, we 
focus on the Undichna, the entire ichnofauna is quite rich 
and will be described elsewhere.

The maximum length of the Undichna trace fossil is 
1.05 m. There are several undulating convex hyporeliefs 
with a central main tail trace, which cuts through all 
other traces and carved the deepest into the sediment 
(marked in dark orange in Fig. 4B), which is evidenced by 
the latter being cut by the former. These traces are for-
mer grooves, now appearing as ridges in the hyporelief, 
which is up to 11  mm wide and maximally 3  mm deep 
(the infill is up to 3  mm high). The wavelength of the 
main furrow varies slightly and the three main sinusoids 
measure 323 mm (sinusoid 1), 322 mm (sinusoid 2), and 
327 (sinusoid 3) mm in length (see Figs. 4A and 5A). The 
amplitude of the main furrow measure 80 mm (sinusoid 
1), 87 mm (sinusoid 2), and 97 (sinusoid 3) mm. The main 
groove displays some very faint chevron patterning, sug-
gesting a swimming direction from the top left to the 
bottom right in Figs. 4 and 5.

The secondary grooves undulate much less regularly 
(marked in red and light orange in Fig.  3). The median 
groove (marked in red in Fig.  4B and in blue in Fig.  6) 
shows a relatively narrow undulation in comparison with 
the marginal discontinuous secondary groove (marked in 
orange and yellow in Figs. 4B and 6). These two grooves can 
be traced across much of the plate and intersect with the 
main groove three times each. Their preservation is quite 
discontinuous, making it doubtful, in some cases, how they 
were previously and possibly linked to each other.

Discussion
Taxonomy
The main ichnotaxonomic features shown in the Undichna 
specimen of the Al Atrous area are the two out-of-phase, 
intertwined waves of different amplitude associated with a 
moderately narrow, sinuous, median furrow. These distinc-
tive features match the diagnosis of Undichna britannica 
[trails of a paired fin alternate in the rhythm of undulation 
with that of the unpaired caudal fin; Minter and Braddy 
(2006)]. Other ichnospecies of Undichna differ in having 
several continuous grooves, paired main traces or else [see 
Minter and Braddy (2006) for an overview]. Our specimen 
best corresponds to the Figs. 2P, Q, U and V in Minter and 
Braddy (2006).

Tracemaker and ethology
In the absence of distinct imprints of appendages, it appears 
unlikely that the trace fossil was produced by a tetrapod. 
Since placoderms became extinct at the Hangenberg Event, 
we can rule them out. Unfortunately, trace fossils of the 
paired fins are insufficiently distinct to determine whether a 
chondrichthyan or an osteichthyan produced the trace fossil. 
There is some weak indication suggesting chondrichthyan, 
because from the preceding Hangenberg Black Shale of the 
southern Maïder region, chondrichthyan remains are known 
(Klug et  al., 2016). Actinopterygians and chondrichthyans 
are rarely reported from the Late Devonian of Morocco, 
only fragmentary remains have been published (Derycke, 
1992, 2017; Derycke et al., 2008, 2014; Frey et al., 2018, 2019, 
2020; Ginter et  al., 2002; Klug et  al., 2016; Lehman, 1976; 
Termier, 1936). Moreover, relatively similar swimming trace 
fossils assigned to Undichna britannica were described from 
the the Late Carboniferous of Spain, which was ascribed to 
Chondrichthyes (Soler-Gijon & Moratalla, 2001).

Fig. 3  Photo of the outcrop with some vegetation after a reasonably 
rainy winter. Note the thin-bedded alternations of siltstone and 
fine-grained sandstones, which weather differentially relative to 
one another. Bed-thickness is likely due to variations in clay content, 
which, in turn, is probably controlled by variations in sea-level and 
clastic input. The Undichna described here is from the thicker bed 
marked by the arrow, which runs obliquely down the slopes on both 
sides of the arrow

(See figure on next page.)
Fig. 4  Undichna britannica, PIMUZ A/I 5060, equivalent of the Hangenberg sandstone, latest Devonian, El Khraouia, near Merzouga and Taouz. A 
Photo taken under shallowly angled white light with the main light source from the top right. B Drawing made from the photo in A with the main 
ichnofossils marked in colours (Diplichnites—light blue, Rusophycus light green). Those belonging to U. britannica are marked in dark orange (main 
trace), red, and light orange (two somewhat discontinuous secondary traces) while more doubtful parts running subparallel are marked in yellow. 
The dark orange part was likely produced by the caudal fin
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Fig. 4  (See legend on previous page.)
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Fig. 5  Undichna britannica, PIMUZ A/I 5060, equivalent of the Hangenberg sandstone, latest Devonian, El Khraouia, near Merzouga and Taouz. 
A Photo taken under shallow white light with the main light source on the bottom left. B 3D scan with Artec Eva. The tracks of the fins are well 
discernible, particularly the impression of the caudal fin is sharp, overlaying the others
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Fig. 6  A, B Interpretative drawing of the two morphotypes of the ichnospecies Undichna britannica. C Schematic sketch of the anatomical features 
of a potential tracemaker (here an acanthodian as example). D Mode of movement based on the anatomical-controlled features recorded within 
the described Undichna britannica from Morocco
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Remarkably, only the main groove shows a harmoni-
ous undulation, while the subordinate grooves produced 
by more anteriorly positioned fins sometimes cross the 
trace of the caudal fin and undulate much more irregu-
larly. U. britannica is represented by two morphotypes. 
The first morphotype has a main trail trace with high-
amplitude undulation and a relatively narrow undulation of 
the median trail trace and the second one has a main trail 
trace with a relatively medium amplitude undulation and a 
rather narrow median trail trace (Trewin, 2000). Undichna 
britannica has been commonly interpreted by a subca-
rangiform swimming behaviour (Cardonatto and Melchor, 
2014).

The subcarangiform swimmers use only the rear two-
thirds of their bodies to generate thrust (Cardonatto and 
Melchor, 2014), keeping the anterior third comparatively 
still (Fig. 6). The narrow undulation is probably produced 
by relatively narrow undulate movement of the anal fin 
(blue colour in Fig. 6). However, the main trail trace with 
a rather constant undulation is produced by the move-
ment of the caudal fin, where the majority of the work of 
displacing water is done (green colour in Fig. 6). Moreo-
ver, the pelvic fins were probably in discontinuous con-
tact with the sediment surface; this would explain the 
discontinuous nature of the lateral trail traces (orange 
blue colour in Fig. 6). This form of swimming increases 
speed by concentrating the lateral movements towards 
the posterior end of the body. This behaviour might be 
developed for escaping predators or even chasing down 
prey. Therefore, the green part of the tracemaker’s body 
in Fig. 6D moves completely in an undulation movement, 
the blue part of the tracemaker’s body (Fig. 6D) produces 
a slightly undulate movement, while the yellow part of 
the tracemaker’s body is mostly a sub-static part.

Bainbridge (1958), Videler (1993) as well as Wis-
shak et al. (2004) attempted to estimate body size of the 
tracemaker based on the dimensions of the grooves and 
its undulations. They suggested that one wavelength of 
the trace of the caudal fin should be around 67% of the 
body length, or five times the amplitude of the trace of 
the caudal fin. Accordingly, the body of the tracemaker 
would have been about 485  mm long when using the 
wavelength or between 400 and 485 mm when using the 
variation of the amplitude of the main trace. Accordingly, 
the fish was about half a metre long, which appears to be 
a reasonable estimate for a non-placoderm fish of the lat-
est Famennian.

Palaeoenvironment
The ichnospecies Undichna britannica is more com-
monly recorded in lacustrine and estuarine settings. 
Nevertheless, it has been recorded in fluvial and other 

shallow marine environments (Cardonatto and Melchor, 
2014; Minter & Braddy, 2006).

The fine clastic sediment and the wave-induced ripple 
marks point at a shallow water environment in the area. 
The reasonable abundance of starfish resting traces prove 
that the environment was marine (e.g., Klug & Pohle, 
2018: fig.  17). This is also supported by the presence of 
cephalopods in layers tens of metres above and below the 
ichnofossil-bearing layer (Kaiser et al., 2013).

The presence of resting traces of starfish and various 
arthropods as well as walking traces of arthropods [Klug 
and Pohle (2018: fig.  17); a more detailed account will 
be published in the next years] allow to assign this layer 
to the Cuziana Ichnofacies (e.g., Seilacher, 1964, 2007). 
According to MacEachern et  al. (2012: tab. 1), this sug-
gests “low energy”, “food deposited on or buried in the 
sediment”, “subtidal settings lying far below fair-weather 
wave base but above storm wave base”. Moreover, the 
transition from thin-bedded, olive-green siltstones and 
shales to fine-grained to medium-grained sandstones and 
conglomerate indicate a change from deeper water shal-
lowing upward into a low-energy depositional environ-
ment (e.g., Kaiser et al., 2018).

Vertebrate evolution
Following the Hangenberg Event, the latest Devonian and 
Early Carboniferous represented a bottle neck in verte-
brate evolution (Sallan & Coates, 2010; Sallan & Galim-
berti, 2015). After the Hangenberg Event, it appears that 
eco-space was vacated through the extinction of placo-
derms and, to a lesser degree, by the diversity decrease 
among sarcopterygians (Sallan & Coates, 2010). Our con-
clusion that the tracemaker is likely either a small chon-
drichthyan or an actinopterygian fits quite well with the 
accelerated radiation of both groups after the Hangen-
berg mass extinction.

Conclusions
We describe the first record of Undichna from the Devo-
nian of Gondwana. Its shape is typical of the ichnospe-
cies U. britannica. We could not identify the tracemaker 
with certainty, but the presence of chondrichthyan 
remains in the only slightly older Hangenberg Black Shale 
in the eastern Anti-Atlas suggests that it might have 
been a chondrichthyan that produced this trace fossil. 
Based on the dimensions of the trace fossil, we assume 
that the animal was about half a metre long. The occur-
rence of a chondrichthyan or an osteichthyan directly fol-
lowing this mass extinction corroborates the hypothesis 
that at least parts of these two clades profited from the 
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mass extinction and underwent a radiation in its wake. 
We plan further exploration in the region for body- and 
trace-fossils of fishes to refine the trace–tracemaker cor-
relation and to contribute to the understanding of evolu-
tion of Late Devonian palaeo-ecosystems before and after 
the Hangenberg crisis.
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