Alperin, M. J., & Hoehler, T. J. (2009). Anaerobic methane oxidation by Archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. American Journal of Science,
309, 869–957.
Article
Google Scholar
Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science,
325, 184–187.
Article
Google Scholar
Beauchamp, B., & Savard, M. (1992). Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios,
7, 434–450.
Article
Google Scholar
Beirne, E. C., Wanamaker, A. D., Jr, & Feindel, S. C. (2012). Experimental validation of environmental controls on the δ13C of Arctica islandica (ocean quahog) shell carbonate. Geochimica et Cosmochimica Acta,
84, 395–409.
Article
Google Scholar
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,
407, 623–626.
Article
Google Scholar
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., & Hinrichs, K.-U. (2014). Global rates of marine sulfate reduction and implications for sub- sea-floor metabolic activities. Science,
344, 889–891.
Article
Google Scholar
Butler, P. G., Wanamaker, A. D., Jr, Scoursea, J. D., Richardsona, C. A., & Reynolds, D. J. (2011). Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology,
302, 21–30.
Article
Google Scholar
Campbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology,
232, 362–407.
Article
Google Scholar
Cobban, W. A., Walaszczyk, I., Obradovich, J. D., & McKinney, K. C. (2006). A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United Styates based on ammonites, inocermanids, and radiometric ages. United Stares Geological Survey. Open File Report, 2006-1250, 1–46.
Cochran, J. K., Kallenberg, K. K., Landman, N. H., Harries, P. J., Weinreb, D., Turekian, K. K., et al. (2010). Effect of diagenesis on the Sr, O, and C isotope composition of Late Cretaceous mollusks from the Western Interior Seaway of North America. American Journal of Science,
310, 69–88.
Article
Google Scholar
Cochran, J. K., Landman, N. H., Turekian, K. K., Michard, A., & Schrag, D. P. (2003). Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: Evidence from Sr and O isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology,
191, 45–64.
Article
Google Scholar
Dennis, K. J., Cochran, J. K., Landman, N. H., & Schrag, D. P. (2013). The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossils. Earth and Planetary Science Letters,
362, 51–65.
Article
Google Scholar
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature,
464, 543–548.
Article
Google Scholar
Fatherree, J. W., Harries, P. J., & Quinn, T. M. (1998). Oxygen and carbon isotope “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (Upper Campanian) of South Dakota: Implications for paleoenvironmental reconstructions. Palaios, 13, 376–385.
Gilbert, G. K., & Gulliver, F. R. (1895). Tepee Buttes. Geological Society of America Bulletin,
6, 333–342.
Article
Google Scholar
Gillikin, D. P., Lorrain, A., Meng, L., & Dehairs, F. (2007). A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta,
71, 2936–2946.
Article
Google Scholar
He, S., Kyser, T. K., & Caldwell, W. G. E. (2005). Paleoenvironment of the Western Interior Seaway inferred from δ18Ο and δ13C values of molluscs from the Cretaceous Bearpaw marine cyclothem. Palaeogeography, Palaeoclimatology, Palaeoecology,
217, 67–85.
Article
Google Scholar
Iversen, N., & Jørgensen, B. B. (1985). Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography,
30(5), 944–955.
Article
Google Scholar
Joseph, C., Torres, M. E., Martin, R. A., Haley, B. A., Pohlman, J. W., Riedel, M., & Rose, K. (2012). Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past. Chemical Geology,
334, 122–130.
Article
Google Scholar
Kauffman, E. G., Arthur, M. A., Howe, B., & Scholle, P. A. (1996). Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A. Geology,
24, 799–802.
Article
Google Scholar
Kiel, S., & Tyler, P. A. (2010). Chemosynthetically-driven ecosystems in the deep sea. In S. Kiel (Ed.), The vent and seep biota: Aspects from microbes to ecosystems (pp. 1–14). New York: Springer.
Chapter
Google Scholar
Kruta, I., Landman, N. H., Rouget, I., Cecca, F., & Tafforeau, P. (2011). The role of ammonites in the mesozoic marine food web revealed by jaw preservation. Science,
331, 70–72.
Article
Google Scholar
Landman, N. H., Cochran, J. K., Brezina, J., Larson, N. L., Garb, M. P., & Harries, P. J. (2012). Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology,
40, 507–510.
Article
Google Scholar
Landman, N. H., Kennedy, W. J., Cobban, W. A., Larson, N. L., & Jorgensen, S. D. (2013) A new species of Hoploscaphites (Ammonoidea: Ancyloceratina) from cold methane seeps in the Upper Cretaceous of the U.S. Western Interior. American Museum of Natural History Novitates, p. 3881.
Landman, N. H., & Waage, K. M. (1993). Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills formation in South Dakota and Wyoming. Bulletin of the American Museum of Natural History,
215, 1–257.
Google Scholar
Lukeneder, A., Harzhauser, M., Müllegger, S., & Piller, W. E. (2010). Ontogeny and habitat change in mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth and Planetary Science Letters,
296, 103–114.
Article
Google Scholar
McArthur, J. M., Kennedy, W. J., Chen, M., Thirwall, M. F., & Gale, A. S. (1994). Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US Western interior. Palaeogeography, Palaeoclimatology, Palaeoecology,
108, 95–119.
Article
Google Scholar
McConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta,
53, 151–162.
Article
Google Scholar
McConnaughey, T. A., Burdett, J., Whelan, J. F., & Paull, C. K. (1997). Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochimica et Cosmochimica Acta,
61, 61l–622.
Article
Google Scholar
McConnaughey, T. A., & Gillikin, D. P. (2008). Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters,
28, 287–299.
Article
Google Scholar
Metz, C. L. (2010). Tectonic controls on the genesis and distribution of Late Cretaceous, Western Interior Basin hydrocarbon seep mounds (Tepee Buttes) of North America. Journal of Geology,
118, 201–213.
Article
Google Scholar
Milucka, J., Ferdelman, T. G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., et al. (2012). Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature,
491, 541–546.
Article
Google Scholar
Sessa, J. A., Knoll, K., Larina, E., Garb, M., Cochran, J. K., Huber, B. T., MacLeod, K. G., Landman, N. H. (2015). Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. Proceedings of the National Academy of Sciences (manuscript in revision).
Stevens, K., Mutterlose, J., & Wiedenroth, K. (2015). Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—implications for habitat reconstructions of extinct cephalopods. Palaeogeography, Palaeoclimatology, Palaeoecology,
417, 164–175.
Article
Google Scholar
Tanaka, N., Monaghan, M. C., & Rye, D. M. (1986). Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature,
320, 520–523.
Article
Google Scholar
Tobin, T. S., & Ward, P. D. (2015). Carbon isotope (δ13C) differences between Late Cretaceous ammonites and benthic mollusks from Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology,
428, 50–57.
Article
Google Scholar
Walker, R. J., Hanson, G. N., Papike, J. J., & O’Neil, J. R. (1986). Nd, O and Sr isotopic constraints on the origin of Precambrian rocks. Southern Black Hills, South Dakota Geochimica et Cosmochimica Acta,
50, 2833–2846.
Article
Google Scholar