Skip to main content

Volume 135 Supplement 1

Special Issue: Cephalopods - Present and Past. Volume II

  • Published:

New records of nautiloid and ammonoid cephalopod fossils in peninsular Thailand

Abstract

Thirty species of nautiloids and ammonoids were identified based on the material collected from peninsular Thailand. Ordovician nautiloids: a sactorthoceratid nautiloid (Sactorthoceras banestanensis) from Changwat Satun, from the western part of the peninsula and a ruedemannoceratid nautiloid (Mediganella magna), from Changwat Nakhon Si Thammarat from the eastern part of the peninsula. Devonian-Carboniferous ammonoid: Neoglyphioceras subcirculare from Changwat Satun. Triassic nautiloids: two orthoceratid nautiloids (Michelinoceras sp. A and Tienoceras sp. A), and two syringonautilid nautiloids (Syringoceras barrandei and Javavionautilus heterophyllus) from Changwat Phatthalung, in the eastern part of the Peninsular. Twenty-four species of ammonoids were collected from the same locality: one ophiceratid (Ophiceras connectens), one flemingitid (Xenodiscoides perplicatus), one meekoceratid (Juvenites canadensis), two paranannitids (Arianites musacchi and Epiceltites genfii), two ussurids (Ussuria sp. A and Ussaria sp. indet.), one noritid (Bosnites clathratus), one acrochordiceratid (Paracrochordiceras sp. indet.), nine ceratitids (Kellnerites bosnensis, Halilucites sp. A, Halilucites sp. B, Eutomoceras aff. laubei, E. dunni, Eutomoceras sp. A, E. sp. B, E. sp. C, E. sp. D), one hungaritid (Hungarites sp. A), one aplococeratid (Aplococeras parrus), one celtitid (Indoceltites trigonalis), one nannolytoceratid (Audaxlytoceras audax) and one protetragonitid (Protetragonites sp. A). All these cephalopods are recorded for the first time in Thailand.

Introduction

The peninsular Thailand is the center of the Shan-Thai block (Bunopas and Vella 1983). The Paleozoic and Mesozoic rocks in peninsular Thailand are the Phuket Mountain range and the Nakhon Si Thammarat Mountain range (Fig. 1), distributed in the north–south axis along the peninsula. Cambrian rocks are present in the southwestern coast of the peninsula, on Tarutao Islands and Changwat Satun on mainland (Pungrassami 1983; Wongwanich et al. 2002; Cocks et al. 2005). The Ordovician Rocks are shales and limestones of deep-water facies, which are 900–1040 m thick and occur in the lower part of the peninsula (DMR 2013). The system consists mainly of the carbonatic Thung Song Group which can be subdivided into seven formations (Wongwanich et al. 1983, 1990; DMR 2001; DMR 2013). The Rung Nok Formation is Early to Middle Ordovician and occurs in Thung Song, Changwat Nakhon Si Thammarat (10°N, 99′E) (the fourth locality of this study) in the northeastern part of the peninsula and La-gnu, Changwat Satun in the southwest (6°N, 102′E). The uppermost Ordovician strata presented at the latter locality have been proposed as Pa Kae Formation (Wongwanich et al. 1983; DMR 2001) (Table 1). The Ordovician and Silurian boundary is about 10 km away in the Thong Pha Phum Group (the first locality). The nautiloid Manchuroceras has been recorded from the Ordovician carbonate in the peninsula (Stait and Burrett 1984). No Ordovician fossils younger than Whiterockian were found.

Fig. 1
figure 1

Localities considered in the present study in peninsular Thailand: 1 Khao Banhan, Changwat Satun; 2 Khao Noi, Changwat Satun; 3 Khao Ok-thalu, Changwat Phatthalung; 4 Khao Phanomsherd, Changwat Nakhon Si Thammarat (modified from: DMR 2001)

Table 1 Stratigraphic chart of the study region, Ordovician to Triassic of Changwat Satun, Changwat Nakhon Si Thammarat and Changwat Phatthalung in peninsular Thailand (DMR 2013)

The Thong Pha Phum Group in the lower part of the peninsula consists of sandy marl, black shale, calcareous siltstone and nodular limestone (Bunopas 1983; DMR 2013). The age of this group is still uncertain (DMR 2001). The group is subdivided into three formations (Table 1) with uncertain age; Wang Tong Formation of Late Ordovician to Early Silurian age, Kuan Tang Formation of Late Silurian to Early Devonian age and Pa Samed Formation of Early Devonian to Early Carboniferous age (Bunopas 1983; Wongwanich et al. 1990) (the second locality). Cephalopod fossils have been recorded in the upper member of the shallow-water facies.

The Lampang Group is Permian with the Phanom Wang Formation, which crops out in the east-central part of the peninsula (Chonglakmani 1983; Raksakulwong 2002). Nautiloids have been recorded from Permian Rocks. Chaiburi Formation is the only Triassic stratigraphic unit of this group (Ampornmaha 1995); it occurs only in Changwat Phattalung (the third locality). This formation consists of three members (Table 1); Phukhaothong Dolomite, Chiak Limestone and Phanomwang Limestone Members (Ampornmaha 1995; Sardsud 2001; Meesook et al. 2002; DMR 2013). Fossils of conodonts, radiolarians and early reptiles have been recorded from these carbonate formations (Ampornmaha 1995; Bunopas 1983; Sardsud 1997, 2001, 2002).

Cephalopod fossils in Thailand, especially in peninsular Thailand are known from only a few localities. The first record was about three species of Carboniferous ammonoids by Reed (1920). At present, the cephalopods recorded from Thailand comprise some 133 species (Reed 1920; Brown et al. 1951; Kummel 1960; Pitakpaiwan et al. 1969; Teraoka et al. 1982; Chonglakmani 1983; Stait and Burrett 1984; Glenister et al. 1990; Ishibashi and Chonglakmani 1990; Ingavat-Helmcke 1994; Ishibashi et al. 1997; Fujikawa et al. 1999, 2005; Fujikawa and Ishibashi 2000; Wongwanich et al. 2004; Zhou and Liengjarere 2004; DMR 2006; Hirsch et al. 2008; Ridd et al. 2011; Kozai et al. 2011). The nautiloids found in Thailand belong to 4 subclasses, 6 orders, 11 families, 15 genera and 21 species. Ammonoids discovered in Thailand were assigned to 1 subclass, 5 orders, 40 families, 71 genera and 112 species. Of these 133 species recorded in Thailand, only 14 of nautiloids and 10 of ammonoids are from peninsular Thailand.

In peninsular Thailand, the previous records of fossil cephalopods were distributed over 24 species. Nautiloids have been recorded only from the Ordovician and ammonoids from the Carboniferous and Permian. The first record of nautiloids was Actinoceras sp. from Changwat Nakhon Si Thammarat, in the eastern part of the peninsula (Brown et al. 1951). Pitakpaiwan et al. (1969) reported Armenoceras cf. chediforme Kobayashi, 1958 from the same locality (including three unidentified Middle Ordovician nautiloids) Changwat Satun, in the western part of the peninsula. Changwat Satun has been the source locality for several nautiloids: Michelinoceras sp., Sinoceras chinense (Foord, 1888) (Stait and Burrett 1984), one endoceroid from the Thung Song Formation (Teraoka et al. 1982), Wutinoceras sp., Endoceratidae indet., Chaohuceras sp., Hardmanoceras chrysanthemum (Kobayashi, 1959), Machuroceras nakamense Stait and Burrett, 1984 (Stait and Burrett 1984; DMR 2006), Actinoceras sp., Armenoceras sp., Georgina sp. and one ormocerid. (Ingavat-Helmcke 1994).

The first cephalopods recorded in peninsular Thailand were Carboniferous ammonoids from Changwat Phatthalung in the eastern part of the peninsular, described by Reed (1920) as Glyphioceras? sp., Prolecanites? sp. and Pronorites aff. cyclolobus (Phillips, 1836). Wongwanich et al. (2004) recorded Syngastrioceras sp. and Stenopronorites aff. uralensis (Karpinsky, 1889) from the Lower Carboniferous of Changwat Satun. From the Lower Permian, Fujikawa et al. (2005) reported five ammonoids from Changwat Phatthalung, Agathiceras aff. suessi Gemmellaro, 1887, A. girtyi (Bose), Agathiceras? sp., Adrianites sp. and Miklukhoceras sp.

Since most palaeontological studies in Thailand have been focused on macro-vertebrates, dinosaurs and fish, the authors aim to raise the renewed interests in fossil invertebrate systematics. This study focuses on taxonomic identification and the description of diversity of cephalopod fossils of the region. However, available materials, particularly ammonoids, are limited to the Ordovician to Triassic, excluding the Permian, Jurassic and Cretaceous and Cenozoic. Therefore, it does not represent the majority of cephalopods diversity in the region. Much more materials are to be discovered and much more publications will follow.

Thai words used in the text are Khao (=Mountain), Muang (=City), Amphoe (=District) and Changwat (=Province).

Materials and methods

The materials are from unsorted collections of the Palaeontological Research and Education Center, Mahasarakham University (PRC), Changwat Mahasarakham (northeastern Thailand); Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University (PSUNHM), Changwat Songkhla (southeastern Thailand); and Natural History Museum, Kampangwitaya School (ISI), Changwat Satun (southwestern Thailand). Specimens of PRC and PSUNHM were collected by the third author (PS) during 1973–1974 as unidentified outcrop fossils. Specimens of ISI were collected from Changwat Satun by the fourth author (TN) in 2004.

A total of 808 specimens of nautiloids and ammonoids were collected from four localities in peninsular Thailand (Fig. 1). The first locality is Khao Noi (06°58′N, 99°46′E), Amphoe Langu, Changwat Satun. The Upper Ordovician (Caradocian to Ashgillian) deposits are included in the Pa Kae Formation, Thung Song Group. The second locality is Khao Banhan (6°56′N 99°47′E) in Ban Han, Amphoe La-ngu, Changwat Satun, Lower Carboniferous (Table 1) deposits are included in the Pa Samed Formation, Thong Pha Phum Group. These two localities are in the western part of the peninsula on the Andaman Sea coast, Indian Ocean . The third locality is Khao Ok-thalu (07°37′N, 100°5′E), Amphoe Muang Phatthalung, Changwat Phatthalung, Phukhaothong Dolomite, Chaiburi Formation, Lampang Group, Early to Middle Triassic (Anisian) (Ampornmaha 1995). The fourth locality is Khao Phanomsherd (08°09′N, 99°51′E), Amphoe Ronphibun, Changwat Nakhonsrithammarat, Rung Nok Formation, Thung Song Group, Lower Ordovician (Arenigian). The two latter localities are in the eastern part of the peninsula on the Gulf of Thailand coast, South China Sea, Pacific Ocean.

The terminology of morphology and measurements essentially follows Arkell et al. (1957) and Teichert et al. (1964). The description of nautiloids was made using the following abbreviations: (Pl) Phragmocone length, (Paw) Phragmocone anterior width, (Ppw) Phragmocone posterior width, (Cl) Chamber length, (Spd) Siphuncle diameter, and (Sl) Septal neck length. The description of the ammonoids was made using the following abbreviations: (Md) Maximum diameter, (Wh) Whorl height, (Ww) Whorl width, and (Ud) Umbilical diameter.

All specimens have been deposited in the reference Collection of the Palaeontological Research and Education Center, Mahasarakham University (PRC) and the Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University (PSUNHM) and the Natural History Museum, Kampangwitaya School, (ISI).

Systematic paleontology (Table 2)

Subclass Orthoceratoidea Kuhn, 1940.

Order Orthocerida Kuhn, 1940.

Family Orthoceratidae Kuhn, 1940.

Genus Michelinoceras Foerste, 1932.

Type species: Orthoceras michelini Barrande, 1866.

Table 2 New records of fossil cephalopods in peninsular Thailand presented herein

Michelinoceras sp. A (Fig. 2a, b)

Material: 1 specimen (PRC-SHM-KO-121); phragmocone length 82.1 mm, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Fig. 2
figure 2

a, b Michelinoceras sp. A; PRC-SHM-KO-121, Chaiburi Formation, Triassic, 7°37′N, 100º5′E, lateral view; c–h Tienoceras sp. A; PRC-SHM-KO-151, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, c, d dorsal view, e anterior cross section, f posterior cross section, g, h ventral view; i–j Sactorthoceras banestanensis Evan, 2006; ISS-LN-ST-024, Pa Kae Formation, Ordovician, 6°58′N, 99°46′E, lateral view; k, l Madiganella magna Teichert and Glenister, 1952; PRC-SHM-KPC-002, Rung Nok Formation, Ordovician, 8°09′N, 99°51′E, lateral view; m, n Syringoceras barrandei (Hauer, 1847); PRC-SHM-KO-056, Chaiburi Formation, Triassic, 7°37′N, 100°5′E, m lateral view, n rectangular cross section; o, p Javavionautilus heterophyllus (Hauer, 1849); PRC-SHM-KO-055, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, o lateral view, p cross section with acute venter

Remarks: The specimen cannot be identified to species level because only one chamber of the phragmocone is preserved and the internal characters are incomplete (a perforate chamber and septal neck of the siphuncle are preserved).

Genus Tienoceras Chao 1954.

Type specie: Tienoceras lenticulare Chao 1954.

Tienoceras sp. A (Fig. 2c–h)

Material: 1 specimen (PRC-SKM-KO-151), phragmocone length 17 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The present Early Triassic specimen differed from T. lenticulare Chao 1954, Permian, in its flatter and depressed round shape of the dorso-ventral cross section and the central position of the siphuncle compared to the lenticular cross section and subcentral siphuncle of T. lenticulare (Chao 1954).

Family Sactorthoceratidae Flower, 1946.

Genus Sactorthoceras Kobayashi, 1934.

Type species: Sactorthoceras gonioseptum Kobayashi, 1934.

Sactorthoceras banestanensis Evans, 2006 (Fig. 2i, j)

2006 Sactorthoceras cf. banestanensis Evans, Evans in Danstanpour et al., Fig. 2, p. 340, Fig. 3, p. 343.

Material: 1 specimen (ISS-LN-ST-024), phragmocone length 69 mm, Pa Kae Formation, Thungsong Group, Ordovician, Khao Noi, Changwat Satun, 6°58′N, 99°46′E, collector T. Nutadhira.

Remarks: The present specimen is similar to S. banestanensis Evan, 2006 from the late Early Ordovician (Caradoccian) of Kerman, East-Central Iran (Dastanpour et al. 2006, Fig. 3, p. 343). However, the size of the septal foramen of the present specimen was smaller (5.5 vs. 13.3 %), while the chamber length was longer (19 vs. 15 %) and the septal neck was longer (6 vs. 3.7 %).

Subclass Nautiloidea Agassiz, 1847.

Order Discosorida Flower, 1950.

Family Ruedemannoceratidae Flower, 1940.

Genus Madiganella Teichert and Glenister, 1952.

Type species: Madiganella magna Teichert and Glenister, 1952.

Madiganella magna Teichert and Glenister, 1952 (Fig. 2k, l)

1957. Madiganella magna; Flower and Teichert, pl. 4, Fig. 7, p. 24.

1964. Madiganella magna; Teichert et al., Fig. 2a, b, p. K329.

Material: 2 specimens (PRC-SHM-KPC-002 and 003), phragmocone length 23.3–31.0 mm, Rung Nok Formation, Thungsong Group, Ordovician, Khao Phanom-Sherd, Changwat Nakhon Si Thammarat, 8°09′N, 99°51′E, collector P. Srisuk.

Remarks: The chamber length of M. magna (see Teichert et al. 1964; Fig. 2a, b, K329) is about 10.7 % of the phragmocone width, but that of the present specimen is about 5.3 %.

Order Nautilida Agassiz, 1847.

Family Syringonautilidae Mojsisovics, 1902.

Genus: Syringoceras Hyatt, 1894.

Type species: Ammonites? granulosostriatus Klipstein, 1843.

Syringoceras barrandei (Hauer, 1847) (Fig. 2m, n)

1953 Syringoceras barrandei; Kummel, Fig. 30D, p. 62; Mojsisovics 1902, pl. 5, Fig. 2b.

1911 Syringoceras barrandei; Renz, Fig. 14, p. 91.

Material: 1 specimen (PRC-SHM-KO-056), diameter 39 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P Srisuk.

Genus Juvavionautilus Mojsisovics, 1902.

Type species: Nautilus heterophyllus Hauer 1849.

Juvavionautilus heterophyllus (Hauer, 1849) (Fig. 2o, p)

1953 Juvavionautilus heterophyllus; Kummel, Fig. 32, C, p. 64, pl. 18, Figs. 1–2, p. 140.

Material: Three specimens (PRC-SHM-KO-055, 110, 112), diameter 53 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Subclass Ammonoidea Zittel, 1884.

Order Goniatitida Hyatt, 1884.

Suborder Goniatitina Hyatt, 1884.

Family Goniatitidae de Haan, 1825.

Genus Neoglyphioceras Brüning, 1923.

Type species: Goniatites spiralis Phillips, 1841.

Neoglyphioceras subcirculare (Miller, 1889) (Fig. 3a, b)

1957 Neoglyphioceras subcirculare; Arkell et al., Fig. 73, p. L59.

Fig. 3
figure 3

a–b Neoglyphioceras subcirculare (Miller, 1981); ISS-LN-ST-025, Pa samed Formation, Late Ordovician, 6°56′N, 99°47′E, a lateral view, lirae on surface, b cross section; c–e Ophiceras connectens Schindewolf, 1954; PRC-SHM-KO-138, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, c lateral view, d cross section, e ceratitic suture; f–h Xenodiscoides perplicatus (Frech, 1905); PRC-SHM-KO-060, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, f lateral view, g cross section, h ceratitic suture; i, j Juvenites canadensis (Tozer, 1961); PRC-SHM-KO-081, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, i lateral view, j cross section; k, l Arianites musacchi Arthaber, 1911; PRC-SHM-KO-207, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, k lateral view, l cross section; m, n Epiceltites genfii Arthaber, 1911; PRC-SHM-KO-061, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, m lateral view; n cross section

1964 Neoglyphioceras subcirculare; Gordon, pl. 20, Figs. 28–44, Figs. 50A, G, 51B.

1971 Neoglyphioceras subcirculare; Furnish et al., pl. 1, Figs. 8–16, p. 11.

Material: One specimen (ISS-LN-ST-025), diameter 80.0 mm, Pa samed Formation, Thong Phaphum Group, Late Ordovician, Khao Banhan, Changwat Satun, 6°56′N, 99°47′E, collector T. Nutadhira.

Remarks: The whorl of the present specimen is more compressed (width index 22.5 %) than the 41.8–58.3 % of the specimens in Gordon (1964, pl. 20, Figs. 28–44, Figs. 50A, G, 51B).

Suborder Ceratitina Hyatt, 1884.

Family Ophiceratidae Arthaber, 1911.

Genus Ophiceras Griesbach, 1880.

Type species: Ophiceras tibeticum Griesbach, 1880.

Ophiceras connectens Schindewolf, 1954 (Fig. 3c–e)

1970. Ophiceras connectens; Kummel, pl. 1, Figs. 2–9, p. 187.

Material: One specimen (PRC-SHM-KO-138), diameter 19.8 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The suture of the present specimen is feebly concave but Kummel (1970; Fig. 2, B) reported specimens, which had a third truncate lateral lobe that gradually tilted up to the umbilicus wall.

Family Flemingitidae Hyatt, 1900.

Genus: Xenodiscoides Spath, 1930.

Type species: Xenodiscus perplicatus Frech, 1905.

Xenodiscoides perplicatus (Frech 1905) (Fig. 3f–h)

1957. Xenodiscoides perplicatus; Arkell et al., Fig. 169, 2, p. L137.

Material: Two specimens (PRC-SHM-KO-060, PRC-92), diameter 24.7 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: Four ribs on the outer whorl near the aperture of the present specimen were thicker than the other ribs and were expanded on the middle of the flank. Such features are absent in the specimen figured by Arkell et al. (1957; Fig. 169, 2, p. L137).

Family Meekoceratidae Waagen, 1895.

Genus Juvenites Smith, 1927.

Type species: Juvenites kraffti Smith, 1927.

Juvenites canadensis (Tozer 1961) (Fig. 3i, j)

1961 Juvenites canadensis; Tozer, pl. 8, no. 3a–d.

1994 Artautoceltites (Thermalites) canadensis; Tozer, pl. 21, Fig. 1a, b, p. 391.

Material: Five specimens (PRC-SHM-KO-081, 375; PSUNHM-2297-505-002, 155, 156), dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Family: Paranannitidae Spath, 1930.

Genus Arianites Arthaber, 1911.

Type species: Arianites musacchi Arthaber, 1911.

Arianites musacchi Arthaber, 1911 (Fig. 3k, l)

1968 Arianites musacchi; Kummel, pl. 2, Figs. 9–10, text-Fig. 26.

1957 Arianites musacchi; Arkell et al., Figure 172 (14a, b), p. L141.

Material: Seven specimens (PRC-SHM-KO-016, 207, 220, 289, 370, 389, 419), diameter 3.7–6.7 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P Srisuk.

Remarks: The present specimens are juveniles. Small nodes along the median flank, that were absent in the adult (Kummel 1968; pl. 2, Figs. 9, 10, text-Fig. 26) are visible in the present material.

Genus Epiceltites Arthaber, 1911.

Type species: Epiceltites genfii Arthaber, 1911.

Epiceltites genfii Arthaber, 1911 (Fig. 3m, n)

1968 Epiceltites genfii; Kummel, pl. 3, Figs. 10, 11, p. 565; pl. 35, Figs. 6, 7, p. 629; text-Fig. 26L, p. 442.

2003 Epiceltites genfii; Mertmann and Jacobshagen, pl. 2, Fig. 14, p. 441; Fig. 23, p. 430.

Material: Two specimens (PRC-SHM-KO-061, PRC-91), diameter 21.4–25.2 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Family Ussuridae Spath, 1930.

Genus Ussuria Diener, 1895.

Type species: Ussuria schamarae Diener, 1985.

Ussuria sp. A (Fig. 4a–c)

Material: 4 specimens (PRC-SHM-KO-020, 083, 314; PSUNHM-2297-505-040), diameter 5.3–10.1 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Fig. 4
figure 4

a–c Ussuria sp. A; PRC-SHM-KO-020, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, a lateral view, b cross section, c ceratitic suture; d, e Ussuria sp. indet.; PRC-SHM-KO-272, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, d lateral view, e cross section; f, g Bosnites clathratus Hyatt and Smith, 1879; PRC-SHM-KO-035, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, f lateral view, g cross section; h, i Paracrochordiceras sp. indet.; PRC-SHM-KO-054, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, h lateral view, i cross section; j–l Kellnerites bosnensis (Hauer, 1888); PRC-SHM-KO-022, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, j lateral view of juvenile, k cross section, l ceratitic suture; m, n Halilucites sp. A; PRC-SHM-KO-376, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, m lateral view, n cross section; o, p Halilucites sp. B; PSUNHM-2197-505-012, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, m lateral view, n cross section

Remarks: Three lateral saddles present in the available specimens compared to only two in other species of the genus. Lobes and saddles are serrated in other species of the genus but smooth in present specimens.

Ussuria sp. indet. (Figure 4d–e)

Material: 198 specimens (PRC-SHM-KO-018 to 672), diameter 3.5–12.4 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: Overall characteristics resemble Ussuria sp. A, but sutures are not visible.

Family Noritidae Karpinsky, 1889.

Genus Bosnites Hauer, 1896.

Type species: Bosnites clathratus Hauer, 1897.

Bosnites clathratus Hauer, 1897 (Fig. 4f, g)

1957 Bosnites clathratus; Arkell et al., Figure 176, 4a, b, p. L146.

Material: Two specimens (PRC-SHM-KO-035, 326), diameter 10.1–17.2 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Family Acrochordiceratidae Arthaber, 1911.

Genus Paracrochordiceras Spath, 1934.

Type species: Acrochordiceras anodosum Welter, 1915.

Paracrochordiceras sp. indet. (Figure 4h–i)

Material: Five specimens (PRC-SHM-KO-054, 095, 330; PSUNHM-2297-505-157,158), dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Family Ceratitidae Mojsisovics, 1879.

Genus Kellnerites Arthaber, 1912.

Type species: Ceratites bosnensis Hauer, 1887.

Kellnerites bosnensis (Hauer 1888) (Fig. 4j–l)

1957 Kellnerites bosnensis; Arkell et al., Figure 183, 1, p. L151.

1964 Kellnerite cf. bosnensis; Bando, pl. 5, Fig. 6, p. 147.

1993 Kellnerites bosnensis; Brack & Rieber, pl. 5, Figs. 7–10, 13–14, p. 509.

Material: Three adult specimens (PRC-SHM-KO-131, 156, 296) and 17 juveniles (PRC-SHM-KO-022, 101, 148-1, 148-2, 148-7, 148-8, 194, 353, 358, 369, 414, 417, 459, 628, 633, 634; PSUNHM-2297-505-152), diameter 19.8–31.8 mm in adult and 3.7–13.3 mm in juvenile, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The ribs of the adult K. bosnensis in Bando (1964; pl. 5, Fig. 6, p. 147) are branched and had three tubercles, but only two in the present “juvenile” specimens. The keel is blunt in all the present specimens.

Genus Halilucites Diener, 1905.

Type species: Ceratites rusticus Hauer, 1896.

Halilucites sp. A (Fig. 4m–n)

Material: 24 specimens (PRC-SHM-KO-084, 295, 329, 337, 356, 376, 382, 387, 395, 470, 506; PSUNHM-2297-505-001, 002, 004–014, 153, 154), diameter 5.2–17.3 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The ribs are falcoid with two nodes on the flanks of the present specimens, but they are falcate without nodes in other species of the genus.

Halilucites sp. B (Fig. 4o–p)

Material: Two specimens (PRC-SHM-KO-084, 395), diameter 6.8–17.3 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: Falcoid ribs of the present specimens differ from falcate ones of other species of the genus. Absence of nodes is a similar characteristic to other species of the genus, but ribs are concave, pronounced.

Genus Eutomoceras Hyatt, 1877.

Type species: Eutomoceras laubei Meek, 1877.

Eutomoceras aff. laubei Meek, 1877 (Fig. 5a, b)

1914 Eutomoceras laubei; Smith, pl. 10, Figs. 7–11, p. 160, pl. 14, Fig. 8–8a, pl. 24, Figs. 7–9, p. 174, pl. 27, Figs. 1–13, p. 177, pl. 90, Figs. 1–4, p. 238.

Fig. 5
figure 5

a–b Eutomoceras aff. laubei Meek, 1877; PRC-SHM-KO-322, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, a lateral view, b cross section; c, d Eutomoceras dunni Smith, 1904; PRC-SHM-KO-147, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, c lateral view, d cross section; e, f Eutomoceras sp. A; PRC-134, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, e lateral view, f cross section, sulcus on keel basement; g, h Eutomoceras sp. B; PRC-SHM-KO-053, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, g lateral view, h cross section; i, j Eutomoceras sp. C; PRC-SHM-KO-108, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, i lateral view, j cross section; k–m Eutomoceras sp. D; PRC-SHM-KO-486, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, k lateral view, l cross section, m ceratitic suture

Material: 1 specimen (PRC-SHM-KO-322), diameter 13.0 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The external morphology of the present specimen is similar to E. laubei Meek, 1877 (Smith 1914; pl. 27, Figs. 5–10, p. 177), except for the presence for the bituberculation on the apertural zone of the third whorl.

Eutomoceras dunni Smith, 1904 (Fig. 5c–d)

1914 Eutomoceras dunni; Smith, pl. 27, Figs. 14–25, p. 177.

1982 Eutomoceras dunni; Silberling and Nichols, pl. 18, Figs. 8–15, p. 116.

2007 Eutomoceras dunni; Jenks et al., pl. 24, figs. C–D, p. 63.

Material: 1 specimen (PRC-SHM-KO-147), diameter 14.3 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Eutomoceras sp. A (Fig. 5e–f)

Material: 1 specimen (PRC 134), diameter 32.8 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The presence of a sulcus on the left side at the keel in the present specimen has never been mentioned from other species of the genus.

Eutomoceras sp. B (Fig. 5g, h)

Material: Two specimens (PRC-SHM-KO-053, 139), diameter 14.1–55.4 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The presence of branched ribs and the alternating arrangement of the branch and branchless ribs are absent from other species of the genus but pronounced in the present specimens.

Eutomoceras sp. C (Fig. 5i–j)

Material: Three specimens (PRC-SHM-KO-108, 128, 129), diameter 21.2–41.9 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The hexagonal umbilicus is the unique characteristics of the present specimens, and differs from the round umbilicus in other species of the genus.

Eutomoceras sp. D (Fig. 5k–m)

Material: 103 specimens (PRC-SHM-KO-025 to 647; PSUNHM-2297-505-015, 027–039), diameter 3.6–38.0 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: Two of the lateral saddles are larger than the others in the present specimens, compared to subequal ones in other species of the genus.

Family Hungaritidae Waagen, 1895.

Genus Hungarites Mojsisovics, 1879.

Type species: Ceratites mojsisovicsi Roth, 1871.

Hungarites sp. A (Fig. 6a, b)

Material: Eight specimens (PRC-SHM-KO-078, 080, 106, 107, 118, 629, 630, 631), diameter 15.33–23.10 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Fig. 6
figure 6

a–c Hungarites sp. A; PRC-SHM-KO-078, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, a lateral view, b cross section, c ceratitic suture; d–f Aplococeras parrus (Smith, 1914); PRC-SHM-KO-027, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, d lateral view, e cross section, f ceratitic suture; g, h Indoceltites trigonalis (Diener, 1908); PRC-SHM-KO-264, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, g lateral view, h cross section.; i, j Audaxlytoceras audax Meneghini, 1881; PRC-SHM-KO-048, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, i lateral view, j cross section; k, l Protetragonites sp. A; PRC-87, Chaiburi Formation, Triassic, 7º37′N, 100º5′E, k lateral view, l cross section

Remarks: The lobes of the suture line are serrated in H. yatesi (Hyatt and Smith 1905, pl. 20, Figs. 1–4, 257 p.), but the lobes are smooth in the present specimens. Other characteristics resemble H. yatesi.

Family Aplococeratidae Spath, 1951.

Genus Aplococeras Hyatt, 1900.

Type species: Dinarites avisianus Mojsisovics, 1882.

Aplococeras parvus (Smith 1914) (Fig. 6d–f)

1982 Aplococeras parvus; Silberling and Nichols, pl. 22, Figs. 18–23; text-Fig. 38, p. 53.

Material: 387 specimens (PRC-SHM-KO-021 to 668; PSUNHM-2297-505-003 to 151), diameter 3.1–13.9 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The overall shell shape and septal suture line elements of present specimens are similar to A. parvus (Silberling and Nichols 1982, pl. 22, Figs. 18–23; text-Fig. 38, p. 53), but the 1st lateral saddle is smaller than the ventral one, that is equal in the type specimen.

Family Celtitidae Mojsisovics, 1893.

Genus Indoceltites Diener, 1919.

Type species: Celtites perauritus Diener, 1908.

Indoceltites trigonalis (Diener 1908) (Fig. 6g, h)

1957 Indoceltites trigonalis; Arkell et al., Fig. 202, 2, p. L172.

Material: 14 specimens (PRC-SHM-KO-090, 264, 346, 349, 635 to 644), diameter 4.3–8.9 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Suborder Lytoceratina Hyatt, 1889.

Family Nannolytoceratidae Spath, 1927.

Genus Audaxlytoceras Fucini, 1923.

Type species: Lytoceras audax Meneghini, 1881).

Audaxlytoceras audax Meneghini, 1881 (Fig. 6i–j)

1957 Audaxlytoceras audax; Arkell et al., Fig. 228, 1, p. L199.

1995 Audaxlytoceras audax; Alkaya and Meister, pl. IV, Fig. 3, p. 171.

1998 Audaxlytoceras audax; Lachkar et al., Fig. 5. 7–8, p. 597.

Material: Four specimens (PRC-SHM-KO-048,143, PRC-89, 90), diameter 15.2–21.3 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The characteristics of the present specimens corresponded to A. audax (Arkell et al. 1957: Fig. 228, 1a–c, L 199), but the whorl section is more compressed.

Family Protetragonitidae Spath, 1927.

Genus Protetragonites Hyatt, 1900.

Type of species: Ammonites quadrisulcatus (D’orbigny, 1841).

Protetragonites sp. A (Fig. 6k, l)

Material: Two specimens (PRC-87, 88), diameter 16.6–20.0 mm, dolomite rock, Phukhaothong Dolomite Member, Chaiburi Formation, Triassic, Khao Ok-Thalu, Changwat Phatthalung, 7º37′N, 100º5′E, collector P. Srisuk.

Remarks: The overall characteristics of the present specimens are similar to P. crebrisulcatus. The latter species has dense ribs on the inner and outer whorls (Nagy 1967; pl. 3, fig. 2, p. 76, pl. 4, Fig. 3, p. 77), but those ribs are absent in the present specimens.

References

  • Alkaya, F., & Meister, C. (1995). Liassic ammonites from the central and eastern Pontides (Ankara and Kelkit area, Turkey). Revue de Paleobiologia, 4(1), 125–193.

    Google Scholar 

  • Ampornmaha, A. (1995). Triassic carbonate rocks in the Phattalung area, Peninsular Thailand. Journal of Southeast Asian Earth Sciences, 11(3), 225–236.

    Article  Google Scholar 

  • Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, O. H., et al. (1957). Treatise on invertebrate palaeontology, part L Mollusca 4: Cephalopoda Ammonoidea. Kansas: University of Kansas Press and Geological Society of America.

    Google Scholar 

  • Bando, Y. (1964). The Triassic stratigraphy and ammonite fauna of Japan. Science Reports of the Tohoku University, Second Series, Geology, 36, 1–137.

    Google Scholar 

  • Brack, P., & Rieber, H. (1993). Towards a better definition of the Anisian/Ladinian boundary: new biostratigraphic data and correlations of boundary section from the Southern Alps. Eclogae Geologicae Helvetiae, 86(2), 415–527.

    Google Scholar 

  • Brown, G. F., Buravas, S., Charaljavanaphet, J., Jalichandra, N., Johnston, W. D., Sresthaputra, V., & Taylor, G. C. (1951). Geologic reconnaissance of the mineral deposits of Thailand. Geological Survey Bulletin, 984, 1–183.

    Google Scholar 

  • Bunopas, S. (1983). Palaeozoic succession in Thailand. In P. Nutalaya (Ed.), Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia (pp. 39–76). Bangkok: The Geological Society of Thailand and Geological Society of Malaysia.

    Google Scholar 

  • Bunopas, S., & Vella, P. (1983). Tectonic and geologic evolution of Thailand. In P. Nutalaya (Ed.), Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia (pp. 307–322). Bangkok: The Geological Society of Thailand and Geological Society of Malaysia.

    Google Scholar 

  • Chao, K. (1954). Permian cephalopods from Tanchiashan, Hunan. Acta Palaeontologica Sinica, 2, 1–58.

    Google Scholar 

  • Chonglakmani, C. (1983). The marine Mesozoic stratigraphy of Thailand. In P. Nutalaya (Ed.), Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia (pp. 105–126). Bangkok: The Geological Society of Thailand and Geological Society of Malaysia.

    Google Scholar 

  • Cocks, L. R. M., Fortey, R. A., & Lee, C. P. (2005). A review of Lower and Middle Palaeozoic biostratigraphy in west peninsular Malaysia and southern Thailand in its context with the Sibumasu Terrane. Journal of Asian Earth Sciences, 24, 703–717.

    Article  Google Scholar 

  • Dastanpour, M., Evans, D. H., & Bassett, M. G. (2006). A new orthoceratoid cephalopod from the Ordovician (Caradoc) of east-central Iran. Geobios, 39, 337–345.

    Article  Google Scholar 

  • Department of Mineral Resources (DMR). (2001). Geology of Thailand, for the royal ceremony of 60th birthday of His Majesty the King 5 December 1999. Bangkok: Department of Mineral Resources, Ministry of Industry.

    Google Scholar 

  • Department of Mineral Resources (DMR). (2006). Checklist of Thai-fossil; commemorative names hornor persons. Bangkok: Department of Mineral Resources, Ministry of Industry.

    Google Scholar 

  • Department of Mineral Resources (DMR). (2013). Lexicon of stratigraphic names of Thailand. Bangkok: Department of Mineral Resources, Ministry of Industry.

    Google Scholar 

  • Flower, R. H., & Teichert, C. (1957). Mollusca article 6, the Cephalopod Order Discosorida. The University of Kansas Paleontological Contributions, 21, 1–189.

    Google Scholar 

  • Fujikawa, M., & Ishibashi, T. (2000). Paleozoic ammonoid paleobiogeography in Southeast Asia. Geosciences Journal, 4(4), 295–300.

    Article  Google Scholar 

  • Fujikawa, M., Ishibasi, T., & Nakornsri, N. (1999). Middle Carboniferous cephalopods from Loei area, northern Thailand. Geological Society of Malaysia Bulletin, 43, 467–475.

    Google Scholar 

  • Fujikawa, M., Ueno, K., Sardsud, A., Saengrichan, W., Kamata, Y., & Hisada, K. (2005). Early Permian ammonoids from Kaeng Krachan Group of the Phatthalung-Hat Yai area, southern Peninsular Thailand. Journal of Asian Earth Sciences, 24, 739–752.

    Article  Google Scholar 

  • Furnish, W. M., Saunders, W. B., Burdick, D. W., & Strimple, H. L. (1971). Faunal studies of the type Chesteran, upper Mississippian of southwestern Illinois. The University of Kansas Paleontological Contributions, 51, 1–55.

    Google Scholar 

  • Glenister, B. F., Furnish, W. M., Zhuren, Z., & Polanah, M. (1990). Ammonoid cephalopods from Lower Permian of Thailand. Journal of Paleontology, 64(3), 479–780.

    Google Scholar 

  • Gordon, M. (1964). Carboniferous cephalopods of arkansas. Geological Survey Professional Paper, 460, 1–393.

    Google Scholar 

  • Hirsch, F., Bartolini, A. & Guex, J. (2008). New ammonite evidence for Late Upper Toarcian along the Tak-Mae Sot highway, Tak province, W. Thailand. In M. Choowong & T. Thitimakorn (Eds.), Proceedings of the international symposia on geoscience resources and environments of Asian Terranes (GREAT 2008), 4 th IGCP 516 and 5 th APSEG (p. 154). Bangkok: Department of Geology, Faculty of Science, Chulalongkorn University.

  • Hyatt, A., & Smith, J. P. (1905). Triassic cephalopod genera of America. Systematic Geology and Paleontology, Professional Paper, 40, 1–74.

    Google Scholar 

  • Ingavat-Helmcke, R. (1994). Paleozoic Paleontological evidence of Thailand. In P. Angsuwathana, T. Wongwanich, W. Tansathien, S. Wongsomsak, & J. Tulyatid (Eds.), Proceedings of international symposium on stratigraphic correlation of Southeast Asia (pp. 43–54). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Ishibashi, T., & Chonglakmani, C. (1990). Uppermost Permian ammonoids from northern Thailand. Journal of Southeast Asian Earth Sciences, 4(3), 163–170.

    Article  Google Scholar 

  • Ishibashi, T., Fujikawa, M., & Nakornsri, N. (1997). Biostratigraphy of Carboniferous and Permian ammonoid in Thailand. In P. Dheeradilok, C. Hinthong, P. Chaodumrong, P. Putthaphiban, W. Tansathien, C. Utha-aroon, N. Sattyarak, T. Nuchanong, & S. Techawan (Eds.), Proceedings of the international conference on stratigraphy and tectonic evolution of Southeast Asia and the South Pacific (pp. 53–55). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Jenks, J., Spielmann, J. A., & Lucas, S. G. (2007). Triassic ammonoids: a photographic journey. New Mexico Museum of Natural History and Science Bulletin, 40, 33–80.

    Google Scholar 

  • Kozai, T., Perelis-Grossowicz, L., Bartolini, A., Yamee, C., Sandoval, J., Hirsch, F., et al. (2011). New palaeontological investigation in the Jurassic of western Thailand. Gondwana Research, 19, 37–46.

    Article  Google Scholar 

  • Kummel, B. (1953). American Triassic coiled nautiloids. Geological Survey Professional Paper, 250, 1–149.

    Google Scholar 

  • Kummel, B. (1960). Triassic ammonoids from Thailand. Journal of Paleontology, 34(4), 682–694.

    Google Scholar 

  • Kummel, B. (1968). Ammonoids of the late Scythian (Lower Triassic). Bulletin of the Museum of Comparative Zoology, 137(3), 311–701.

    Google Scholar 

  • Kummel, B. (1970). Ammonoids from the Kathwai Member, Mianwali Formation, Salt range, West Pakistan. In C. Kummel & C. Teichert (Eds.), Stratigraphic boundary problems: Permian and Triassic of West Pakistan (pp. 177–192). Kansas: Department of Geology, University of Kansas.

    Google Scholar 

  • Lachkar, N., Dommergues, J. L., Meister, C., Neige, P., Izart, A., & Lang, J. (1998). Les ammonites du Sinémurien supérieur du Jebel Bou-Hamid (Haut-Atlas central, Rich, Maroc). Approaches paléontologique et biostratigraphique. Geobios, 31(5), 587–619.

    Google Scholar 

  • Meesook, A., Suteethorn, V., Chaodumrong, P., Teerarungsikul, N., Sardsud, A., & Wongproyoon, T. (2002). Mesozoic rocks of Thailand: a summary. In N. Mantajit (Ed.), Proceedings of the symposium on geology of Thailand (pp. 82–94). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Mertmann, D., & Jacobshagen, V. (2003). Upper Olenekian (Spathian) ammonoids from Chios (Lower Triassic, Greece): taxonomy and stratigraphic position. Rivista Italiana di Paleontologia e Ttratigrafia, 109, 417–447.

    Google Scholar 

  • Nagy, V. I. Z. (1967). Unterkretazische Cephalopoden aus dem Gerecse-Gebirge I. Annales Historico-Naturales Musei Nationalis Hungarici Pars Mineralogica et Palaeontologica, 59, 53–79.

    Google Scholar 

  • Pitakpaiwan, K., Ingavat, R., & Pariwatvorn, P. (1969). Fossils of Thailand-volume two. Bangkok: Geological Survey Division, Department of Mineral Resources.

    Google Scholar 

  • Pungrassami, T. (1983). Geology of the Tarutau Islands. In P. Nutalaya (Ed.), Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia (p. 369). Bangkok: The Geological Society of Thailand and Geological Society of Malaysia.

    Google Scholar 

  • Raksakulwong, L. (2002). Upper Paleozoic rocks of Thailand. In N. Mantajit (Ed.), Proceedings of the symposium on geology of Thailand (pp. 29–34). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Reed, F. R. C. (1920). Carboniferous fossils from Siam. Geological Magazine, 57(669), 113–120.

    Article  Google Scholar 

  • Renz, C. (1911). Die mesozoischen Faunen Griechenlands. Palaeontographica, 58, 1–104.

    Google Scholar 

  • Ridd, M. F., Barber, A. J., & Crow, M. J. (2011). The geology of Thailand. London: The Geology Society of London.

    Google Scholar 

  • Sardsud, A. (1997). Discovery of Triassic carbonate rocks in peninsular Thailand. Bangkok: Mineral Resources Development Division, Department of Mineral Resources.

    Google Scholar 

  • Sardsud, A. (2001). Preleminary report on geological survey for standardization of Chaiburi Formation, Changwat Phattalung. In T. Wongwanich (Ed.), Proceedings of the annual symposium of Geological Division, Department of Mineral Resources (pp. 31–40). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Sardsud, A. (2002). Triassic conodont faunas and zonation in the Chaiburi formation from the Phattalung area, peninsular Thailand. In N. Mantajit (Ed.), Proceedings of the symposium on geology of Thailand (p. 154). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Silberling, N. J., & Nichols, K. M. (1982). Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. Geological Survey Professional Paper, 1207, 1–156.

    Google Scholar 

  • Smith, J. P. S. (1914). The Middle Triassic marine invertebrate faunas of North America. Department of the Interior United States Geological Survey Professional Paper, 83, 1–254.

    Google Scholar 

  • Stait, B. A., & Burrett, C. F. (1984). Ordovician nautiloid faunas of Central and Southern Thailand. Geological Magazine, 121(2), 115–124.

    Article  Google Scholar 

  • Teichert, C., Kummel, B., Sweet, W. C., Stenzel, H. B., Furnish, W. M., Glenister, B. F., et al. (1964). Treatise on invertebrate palaeontology, part K Mollusca 3: Cephalopoda-General Features-Endoceratoidea-Actinoceratoidea-Nautiloidea-Bactritoidea. Kansas: Geological Society of America and University of Kansas Press.

    Google Scholar 

  • Teraoka, Y., Sawata, H., Yoshida, T., & Pungrassami, T. (1982). Lower Paleozoic formations of the Tarutao Islands, southern Thailand. Prince of Songkla University Report of Stratigraphic Study Team, 6, 1–53.

    Google Scholar 

  • Tozer, E. T. (1961). Triassic stratigraphy and faunas, Queen Elizabeth Islands, Arctic Archipelago. Geological Survey of Canada Memoir, 316, 1–116.

    Google Scholar 

  • Tozer, E. T. (1994). Canadian Triassic Ammonoid Fauna. Geological Survey of Canada Bulletin, 467, 1–669.

    Google Scholar 

  • Wongwanich, T., Boucot, A. J., Brunton, C. H. C., House, M. R., & Racheboeuf, P. R. (2004). Namurian fossils (brachiopods, goniatites) from Satun province, southern Thailand. Journal Paleontology, 78(6), 1072–1085.

    Article  Google Scholar 

  • Wongwanich, T., Burrett, C., Tansathien, W., & Chaodumrong, P. (1990). Lower to Mid-Paleozoic stratigraphy of mainland Satun province, Southern Thailand. Journal of Southeast Asian Earth Sciences, 4(1), 1–9.

    Article  Google Scholar 

  • Wongwanich, T., Tansathien, W., Leevongcharoen, S., Paengkaew, W., Thiamwong, P., Chaeroenmit, J., & Saengsrichan, W. (2002). The Lower Paleozoic rocks of Thailand. In N. Mantajit (Ed.), Proceedings of the symposium on geology of Thailand (pp. 16–21). Bangkok: Department of Mineral Resources.

    Google Scholar 

  • Wongwanich, T., Wyatt, D., Stait, B., & Burrett, C. (1983). The Ordovician system in southern Thailand and northern Malaysia. In P. Nutalaya (Ed.), Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia (pp. 77–95). Bangkok: The Geological Society of Thailand and Geological Society of Malaysia.

    Google Scholar 

  • Zhou, Z., & Liengjarere, M. (2004). Lower Permian Perrinitid ammonoid faunas from Thailand. Journal of Paleontology, 78(2), 317–339.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Palaeontological Research and Education Center, Mahasarakham University, Thailand, for the loan of specimens included in this study. We also thank the staff of the Excellence Centre for Biodiversity of Peninsular Thailand, Department of Biology, and Princess Maha Chakri Sirindhorn Natural History Museum, Faculty of Science, Prince of Songkla University for their assistance in the laboratory work. Our warmest thanks are dedicated to Janek von Byern (Core Facility Cell Imaging and Ultrastructure Research), Leopold Krystyn and Christian Baal (Faculty of Earth Science, University of Vienna). Our grateful thanks are for Alexander Lukeneder (Naturhistorisches Museum Wien), Attila Vörös (Hungarian Natural History Museum) and René Hoffmann (Department of Earth Science, Freie Universität Berlin) for their supervision.  We also wish to gratefully acknowledge Christian Klug (University of Zurich, Switzerland) for his many helpful suggestions and comments resulting in a substantial improvement to the quality of the manuscript. This work was also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and ASEA-UNINETS research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaruwat Nabhitabhata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongtherm, K., Nabhitabhata, J., Srisuk, P. et al. New records of nautiloid and ammonoid cephalopod fossils in peninsular Thailand. Swiss J Palaeontol 135, 153–168 (2016). https://doi.org/10.1007/s13358-015-0108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13358-015-0108-8

Keywords