Skip to main content
  • Regular Research Article
  • Published:

New Albian ammonite faunas from Semelenberg (Alpstein, Switzerland) and their paleoecology

Abstract

The Alpstein (northeastern Switzerland) has yielded a relatively high diversity of Cretaceous macrofossils. Here, new discoveries of invertebrate fossils from a new locality of the early to late Albian age in Semelenberg (northeastern Alpstein, canton St. Gallen) are documented. In spite of the very small size of these samples and the 1-m-thick, very condensed section, the locality yielded four ammonite species that are here documented for the first time from Switzerland. One of these species is new and Eoscaphites kuersteineri sp. nov. is introduced as new taxon. We also investigated the paleoecology of the middle to late Albian of this region based on the abundant macrofossils. The alpha diversity at Semelenberg is very similar to that of a previously documented fauna from several localities in the northeastern Alpstein region of similar age, which are located 2–10 km west of Semelenberg. A minor discrepancy is rooted in the proportion of benthic organisms, which may indicate slight differences in bathymetry between Semelenberg and the previously studied locality (northeastern Alpstein).

Introduction

In the past few years, a number of studies have improved our understanding of Cretaceous paleoecology in the Alpstein, Switzerland (Sulser et al. 2013; Tajika et al. 2017a, b; Kürsteiner and Klug 2018). These studies documented dynamic paleoecological shifts from the Barremian to the Cenomanian, which were induced by paleoenvironmental changes (e.g., Föllmi and Ouwehand 1987; Föllmi 1989a, b, c; Föllmi et al. 2007). These also revealed that cephalopods is the group of organisms, which are the most diverse and abundant in the Alpstein.

Here we (1) report new discoveries of early to late Albian cephalopod-dominated invertebrate faunas from new outcrops in Semelenberg, (2) analyze the paleoecological structure of the late Albian in Semelenberg and (3) discuss the faunal diversity of this stratigraphic interval in the Alpstein region in comparison with those of previously studied faunas at different times and localities.

Geological setting, materials and methods

All fossils included in this study were collected by Peter Kürsteiner (St. Gallen) and KT in Semelenberg, Alpstein (canton of St. Gallen, Switzerland; Fig. 1). The Alpstein region is known to expose several fossiliferous sedimentary sequences: Tierwis Formation (uppermost Hauterivian to upper Barremian), Schrattenkalk Formation (upper Barremian to middle lower Aptian), Garschella Formation (upper lower Aptian to lowermost Cenomanian; for sedimentological and paleontological details of each sequence, see Tajika et al. 2017a, b). At Semelenberg, only a part of the Garschella Formation is exposed. Most fossils originate from an outcrop named Semelenberg Nord II and some fossils were collected from blocks which were found in the scree (Semelenberg Nord). The blocks collected at Semelenberg Nord yielded ammonites such as Douvilleiceras and Protanisoceras, which indicate an early Albian age, while the high abundance of Mortoniceras and Hysteroceras combined with rare occurrences of Mirapelia and Hoplites in Semelenberg Nord II indicate a middle to early late Albian age (faunas ‘Paleoecology 3’ and ‘Paleoecology 4’ in Tajika et al. 2017a: tab. 1, fig. 2). A very low number of possible middle Albian ammonites (Hoplites mirabiliformis and Mirapelia cf. buarquianum) suggest that the fauna mostly contains late Albian faunal elements. The material presented here will be housed in the Naturmuseum St. Gallen with the abbreviation NMSG Coll. PK. In addition, Semelenberg Nord II can be divided into several beds (C1–C5, see Fig. 1). The sedimentary sequence is composed of limestones moderately to very rich in phosphorites and glauconite. The most fossiliferous beds are C4 and the upper part of C3 (Fig. 1), which are moderately glauconitic and very rich in phosphorite.

Fig. 1
figure 1

Location and geology of Semelenberg. A Location of Semelenberg on the geological map (modified after Tajika et al. 2017). B Field image of Semelenberg Nord II. C1C5 Facies of the four examined layers in Semelenberg Nord II. Scale bars for C1–C5 = 10 mm. D Stratigraphic section of Semelenberg Nord II

We examined the paleoecology of the fauna from Semelenberg Nord II (222 specimens) with a focus on the two diversity indices of familial taxonomic richness and ecological disparity. We employed the method introduced by Bush et al. (2007) to calculate the number of ecospaces occupied by the fauna as ecological disparity, which was also used in Tajika et al. (2017a). Accordingly, each organism was assigned to an ecological category based on tiering (pelagic, erect, surficial, semi-infaunal, shallow infaunal and deep infaunal), motility level (freely fast, freely slow, facultative-unattached, facultative-attached, non-motile unattached, non-motile attached) and feeding mechanism (suspension, surface deposit, mining grazing, predatory, other; for details of the classification, see table 2 in Tajika et al. 2017a). This combination of different ecological categories (6 for each tiering, motility level and feeding mechanism) yields 6 × 6 × 6 (= 216) different theoretical ecological types. We compared the number of occupied theoretical ecologies in the fauna with those of Tajika et al. (2017a). To this end, the sample size was standardized using rarefaction analysis with Past 3.15 (Hammer et al. 2001). To detect ecologically dominant taxa in the fauna, the ‘trophic nucleus’-concept was utilized (Neyman 1967; Tajika et al. 2017a). Accordingly, taxa, which constitute 80% of the fauna, were detected. Details of the procedure are given in Tajika et al. (2017a).

Results

Cephalopod faunas from Semelenberg

Cephalopods collected at Semelenberg I include Beudanticeras sp., Douvilleiceras inaequinodum (Quenstedt, 1846) and Protanisoceras cantianum Spath, 1939, which indicate the early Albian (most likely Douvilleiceras mammillatum Zone). At Semelenberg Nord II, we collected the following cephalopods: Anisoceras armatum (Sowerby, 1817), A. perarmatum (Pictet and Campiche, 1861), A. pseudelegans (Pictet and Campiche, 1861), Beudanticeras cf. beudanti (Brongniart, 1822), Desmoceras sp., Dipoloceras cristatum (Brongniart, 1822), Eutrephoceras montmollini (Pictet and Campiche, 1859), Hamites virgulatus (Brongniart, 1822), H. subvirgulatus Spath, 1941, H. cf. intermedius Sowerby, 1814, Hoplites mirabiliformis Spath, 1925, Hysteroceras cf. orbigny Spath, 1922, Hyst. varicosum (Sowerby, 1824), Idiohamites cf. dorsetensis Spath, 1939, Kossmatella muhlenbecki (Fallot, 1885), Mirapelia cf. buarquianum (White, 1887), Mortoniceras sp., Neophlycticeras blancheti (Pictet and Campiche, 1859), Phylloceras (Hypophylloceras) sp., Pseudhelicoceras cf. perelegans Spath, 1937, Pseud. robertianum robertianum (d’Orbigny, 1842), Puzosia (Puzosia) mayoriana (d’Orbigny, 1841), Tetragonites sp. These ammonites indicate an early late Albian age (most likely a mix of Dipoloceras cristatum Zone and Mortoniceras spp. Zones). Although most of the cephalopods were already documented from the Alpstein (Tajika et al. 2017b; Kürsteiner and Klug 2018), a total of eight species including one new species are here first documented from the Alpstein, to which we give descriptions below. These materials are shown in Fig. 2. Four of these species are documented in Switzerland for the first time: Hoplites mirabiliformis Spath, 1925, Mirapelia cf. buarquianum (White, 1887), Dipoloceras cristatum (Brongniart, 1822), Eoscaphites kuersteineri sp. nov.

Fig. 2
figure 2

Early–late Albian cephalopod fauna of Semelenberg (Alpstein, Switzerland). AQ–AR and AT–AU were collected at Semelenberg Nord and all other specimens come from Semelenberg Nord II. A, B Eutrephoceras montmollini (Pictet and Campiche, 1859); NMSG Coll. PK. 7B.46.06. C, D Phylloceras (Hypophylloceras) sp.; NMSG Coll. PK. 7B.46.98. E, F Kossmatella muhlenbecki (Fallot, 1885); NMSG Coll. PK. 7B.46.99. G, H Tetragonites sp.; NMSG Coll. PK. 7B.46.62. I, J Beudanticeras cf. beudanti (Brongniart, 1822); NMSG Coll. PK. 7B.46.53. K, L Puzosia (Puzosia) mayoriana (d’Orbigny, 1841); NMSG Coll. PK. 7B.46.59. M, N Hoplites mirabiliformis Spath, 1925; NMSG Coll. PK. 7B.46.10. O, P Dipoloceras cristatum (Brongniart, 1822); NMSG Coll. PK. 7B.46.15. Q, R, Mirapelia buarquianum (White, 1887); NMSG Coll. PK. 7B.46.28. S, T Anisoceras armatum (Sowerby, 1817); NMSG Coll. PK. 7B.46.30. U Hysteroceras cf. carinatum Spath, 1922; NMSG Coll. PK. 7B.46.19. V Hamites cf. intermedius Sowerby, 1814; NMSG Coll. PK. 7B.46.72. W, X Hysteroceras varicosum (Sowerby, 1824); NMSG Coll. PK. 7B.46.64. Y, Z Neophlycticeras blancheti (Pictet and Campiche, 1859); NMSG Coll. PK. 7B.46.12. AA, AB Hamites subvirgulatus (Spath, 1941); NMSG Coll. PK. 7B.46.80. AC, AD ?Idiohamites sp.; NMSG Coll. PK. 7B.46.7). AE, AF Pseudhelicoceras sp.; NMSG Coll. PK. 7B.46.96. AG, AH Mortoniceras sp.; NMSG Coll. PK. 7B.46.33. AI Anisoceras perarmatum Pictet and Campiche, 1861; NMSG Coll. PK. 7B.46.34. AJ Pseudhelicoceras robertianum robertianum (d’Orbigny, 1842); NMSG Coll. PK. 7B.46.88. AK Pseudhelicoceras cf. perelegans Spath, 1937; NMSG Coll. PK. 7B.46.94. AL Turrilitidae indet, NMSG Coll. PK. 7B.46.43. AM, AP Eoscaphites kuersteineri sp. nov.; holotype, NMSG Coll. PK. 7B.46.07. AQ, AR Protanisoceras cantianum Spath, 1939; NMSG Coll. PK. 7B.45.05. AS Hamitoides sp.; NMSG Coll. PK. 7B.46.13. AT, AU, Douvilleiceras inaequinodum (Quenstedt, 1846); NMSG Coll. PK. 7B.45.03

Paleoecology

Taxonomic richness and ecological disparity of the fauna in the late Albian are summarized in Table 1. The results show that the fauna is dominated by normally coiled and heteromorphic ammonites, which represent the ecological category of ‘pelagic, freely fast, predator’. To compare these new results to those of Tajika et al. (2017a), the sample size was rarefied to 70 (Table 1). In addition, the ecological categories of tiering, motility and feeding in the Semelenberg fauna are summarized in Fig. 3. Seven taxa form the trophic nucleus (Table 1).

Table 1 Familial taxonomic richness and ecological categories of the late Albian fauna of Semelenberg
Fig. 3
figure 3

Proportional abundances of tiering, motility and feeding in the late Albian of the Alpstein. A Results from Tajika, Kürsteiner and Klug (2017a). B Results of this study

Systematic paleontology

Order Ammonoidea Zittel, 1884.

Suborder Ammonitina Hyatt, 1889.

Superfamily Hoplitoidea Douvillé, 1890.

Family Hoplitidae Douvillé, 1890.

Subfamily Hoplitinae Douvillé, 1890.

Genus Hoplites Neymayr, 1875.

Type species Ammonites dentatus Sowerby, 1821, p. 3, pl. CCCVIII, fig. 3.

Hoplites mirabiliformis Spath, 1925.

Figure 2m, n.

Synonymy

1925 Hoplites mirabiliformis Spath, p. 125, pl. XI, fig. 6a, 6b, text-fig. 31b.

1982 Hoplites cf. mirabiliformis Colleté et al., pl. 19. fig. 2.

1989c Hoplites (Hoplites) mirabiliformis Föllmi, p. 147, pl. 12, fig. 3a, 3b.

Holotype Hoplites mirabiliformis Spath, 1925, p. 125, pl. XI, fig. 6a, b. From Devizes, England, Albian (Hoplites dentatus Zone).

Material One fragment (NMSG Coll. PK. 7B.46.10).

Description The specimen measures 32 mm in maximal measurable conch diameter. The whorl section is weakly depressed (ww/wh = 1.09). There are ten straight to flexuous ribs per quarter whorl, which are interrupted by a ventral groove. At umbilical tubercles, the primaries split into three ribs, all of which end with moderately strongly developed ventral tubercles.

Discussion The specimen resembles the holotype figured in Spath (1925) in ribbing, tuberculation and whorl section. H. mirabilis is similar but the original drawing of the species (Parona and Bonarelli 1897) shows a slightly stronger tuberculation than the present species. Föllmi (1989c) also mentioned that the width of the flank is the highest in the mid flank in H. mirabilis. Nevertheless, all the slight differences probably fall within intraspecific variation.

Occurrences Middle Albian (H. dentatus Zone). France, England, Austria.

Superfamily Acanthoceratoidea, Grossouvre, 1894.

Family Mojsisovicsiidae Hyatt, 1903.

Subfamily Mojsisovicziinae Hyatt, 1903.

Genus Mirapelia Cooper, 1982.

Type species Ammonites mirapelianus d’Orbigny, 1850, p. 124.

Mirapelia cf. buarquianum (White, 1887).

Figure 2q, r.

Synonymy

1850 Ammonites mirapelianus d’Orbigny, 1850, p. 302.

1982 Oxytropidoceras (Mirapelia) mirapelianum, Cooper, fig. 14D–14E.

1997 Oxytropidoceras (Mirapelia) mirapelianum, Kennedy et al., p. 466, pl. 2, fig. 9; pl. 3, fig. 3, pl. 5, figs. 12–13, pl. 7, fig. 4, pl. 10, fig. 12, pl. 11, fig. 2.

2002 Oxytropidoceras (Mirapelia) mirapelianum, Robert, p. 183, pl. 34, figs. 4–5.

2010 Mirapelia mirapelianum, Bulot, p. 178.

Lectotype Ammonites buarquianus White, 1887, p.222, pl. 24 (figs. 3–4), pl. 25 (figs. 7–8). From Maroim (Sergipe), Brazil,?middle Albian.

Material One phragmocone fragment (NMSG Coll. PK. 7B.46.28).

Description The specimen measures 134 mm in maximum conch diameter. It is extremely discoidal (wh/dm = 0.24) and subinvolute (ww/dm = 0.24). The primary ribs, which are faint probably due to the absence of shell and erosion, are straight to slightly flexuous and moderately distantly spaced (13 ribs per half whorl). The ribs become faint on the outer flank where they split and then end in low tubercles at the ventrolateral edge. A distinct keel is present.

Discussion Our specimen is similar to the lectotype (White 1887) in its rib spacing and high whorl section. But the preservation hampers a more detailed examination of ribbing, which made the species identification somewhat uncertain.

Occurrences Early middle Albian (most likely Hoplites dentatus Zone). Iran, Angola, Texas, Brazil.

Genus Dipoloceras Hyatt, 1900.

Type species Ammonites cristatus Brongniart, 1822, p. 395, pl. 7, fig. 9.

Dipoloceras cristatum (Brongniart, 1822).

Figure 2o, p.

Synonymy

1822 Ammonites cristatus Brongniart, 1822, p. 395, pl. 7, fig. 9.

1928 Dipoloceras cristatum var. Scott, p. 114, pl. 16, figs. 3–5, 8–9.

1928 Dipoloceras fredericksburgense, Scott, p. 115, pl. 15, figs. 1–5.

1931 Dipoloceras cristatum, Spath, p. 365, pl. 32, figs. 1–3, pl. 33, fig. 4, pl. 35, figs. 6–8, 10–15, text-figs. 119-121, 122a, 122e, 122f, 122 g, 122 h.

1931 Dipoloceras fredericksburgense, Spath p. 371, pl. 34, figs. 8–10, 14, text-figs. 122b, 123.

1941 Dipoloceras cristatum Van Hoepen, p. 56, text-figs. 1–2.

1951 Dipoloceras cristatum, Collignon, p. 22, pl. 2, figs. 3–4.

1951 Dipoloceras sp. aff. fredericksburgense, Collgnon, p. 26, pl. 4, fig. 1, pl. 6, fig. 1, text-fig. 9.

1963 Dipoloceras cristatum, Collignon, p. 146, p. 147, figs. 1291–1292, 1294–1295.

1963 Dipoloceras sp. aff. fredericksburgense, Collgnon, pl. 301, fig. 1301.

1966 Dipoloceras cristatum cristatum, Young, p. 130, pl. 15, figs. 1, 4, text-figs. 17c, 20d.

1966 Dipoloceras cristatum alatum, Young, p. 131, pl. 31, figs. 4, 5, text-fig. 20a.

1966 Dipoloceras fredericksburgense, Young, 1966, p. 130, pl. 32, figs. 1–6, text-figs. 7e, 7 g, 11 g, 17a.

1967 Dipoloceras cristatum, Collignon, p. 20, pl. 3, fig. 9.

1975 Dipoloceras cristatum, Förster, p. 226, pl. 11, fig. 12, pl. 12, fig. 4, text-fig. 72.

1994 Dipoloceras cristatum alatum, Emerson et al., fig 48.

1994 Dipoloceras fredericksburgense, Emerson et al. p. 116.

1999 Dipoloceras (Dipoloceras) cristatum, Kennedy et al., p. 1105, figs. 4.9, 5.1–5.11, 6.7–6.12, 7.8, 7.9, 10.5.

Holotype Ammonites cristatus Brongniart, 1822, p. 395, pl. 7, fig. 9.

Material One fragment (NMSG Coll. PK. 7B.46.15). Folkestone, England, early late Albian.

Description The whorl fragment measures 54 mm in maximum measurable conch diameter. There is a feebly projected primary rib and nine rather straight secondary ribs. One of the primaries developed a strong node, which is characteristic for this species. Three of the secondary ribs correspond to one primary rib. A keel divides the ribs on the venter. The whorl section and umbilical width are not measurable due to the fragmentary preservation.

Discussion Our specimen appears slightly more compressed than the specimen in the original drawing of Brongniart (1822) while the overall ornamentation and the distinct primary rib are similar.

Occurrences Early late Albian (Dipoloceras cristatum Zone). France, England, Poland, Morocco, Tunisia, Zululand, Mozambique, Madagascar, Texas, Suriname, India, Japan.

Family Lyelliceratidae Spath, 1921.

Subfamily Stoliczkaiinae Breistroffer, 1953.

Remark Cooper (2012) proposed that Stoliczkaia Neumayr, 1875 and Stoliczkaiinae Breistroffer, 1953 be replaced by Stoliczkaiella and Stoliczkaiellinae. However, the valid genus name of the Serpentes to which Cooper (2012) referred as the valid “Stoliczkaia” is Stoliczkia Jerdon, 1870 (p. 367 in Malkmus et al. 2002). Thus, Stoliczkaia Neumayr, 1875 and Stoliczkaiinae Breistroffer, 1953 are valid.

Genus Neophlycticeras Spath, 1922.

Type species Ammonites brottianus d’Orbigny, 1841 p. 29, pl. 85, figs. 8–10.

Neophlycticeras blancheti (Pictet and Campiche, 1859).

Figure 2y, z.

Synonymy

1859 Ammonites blancheti Pictet and Campiche, p. 188, pl. 23, figs. 2–6.

1865 Ammonites rhamnonotus Seeley, p. 239, pl. 11, fig. 7.

1875 Ammonites gardonicus Hébert and Munier-Chalmas, pl. 4, figs. 1–2.

1931 Neophlycticeras blancheti Spath, p. 325, text-fig. 105, pl. 34, figs. 11–13.

1931 Stoliczkaia rhamnonota Spath, p. 331, pl. 31. Figs. 4, 7, 9, 12, pl. 32, fig. 8, text-fig. 109.

1968 Stoliczkaia (Faraudiella) blancheti, Renz, 1968, p. 46, pl. 5. Fig. 21.

1968 Stoliczkaia (Faraudiella) gardonicus, Renz, 1968, p. 46, pl. 5. figs. 17, 18, text-fig. 16a.

1978 Stoliczkaia (Faraudiella) rhamnonota, Wright and Kennedy, 1978, p. 396, pl. 36, figs. 5–6.

1981 Stoliczkaia (Faraudiella) rhamnonota, Chiriac, 1981, p. 124, pl. 30. fig. 1.

1992 Stoliczkaia (Faraudiella) blancheti, Atabekian, p. 202, pl. 113, figs. 1–3, pl. 114, figs. 1–3.

1994 Neophlycticeras (Neophlycticeras) blancheti, Wright and Kennedy, p. 563, figs. 2a, 2b, 2c, 2d, 2e, 2f, 2 g, 2 h, 2i, 2j, 2 k, 2 l, 2 m, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 7 g, 7 h.

1994 Neophlycticeras (Neophlycticeras) blancheti, Kennedy and Delamette, p. 1269, figs. 6.1–6.8, 6.19–6.22, 7.1–7.12, 7.15–7.17, 8.3, 9.1–9.2.

2002 Neophlycticeras (Neophlycticeras) blancheti, Amédro, p. 62, pl. 9, figs. 4, 5.

2008 Neophlycticeras (Neophlycticeras) blancheti, Kennedy et al., p. 44, pl. 4, fig. 24, pl. 10, figs. 1–2.

Type: Ammonites blancheti Pictet and Campiche, 1859, p. 188, pl. 23, fig. 2. From Sainte-Croix, Switzerland, Albian.

Material Two whorl fragments (NMSG Coll. PK. 7B.46.11; 7B.46.12).

Description NMSG Coll. PK. 7B.46.12 is a small fragment, which measures 47 mm in maximum measurable size. The whorl section appears compressed with a rather flat flank, which has a maximum width on the umbilical edge. Ventral tubercles persist. A keel is present, which is composed of flat and keeled nodes.

Discussion Although our specimens are fragmentary, they show the compressed whorl section, the characteristic feeble but relatively dense ribs and constant tuberculation, which are diagnostic characters of N. blancheti.

Occurrences Late Albian. France, England, Belgium, Switzerland, Romania, Armenia.

Suborder Ancyloceratina Wiedmann, 1966.

Superfamily Ancyloceratoidea Gill, 1871.

Familiy Labeceratidae Spath, 1925.

Genus Hamitoides Spath, 1925.

Type species Hamites studerianus Pictet in Pictet and Roux, 1847, p. 137, pl. xv, figs. 1a–c.

Hamitoides sp.

Figure 2AS.

Material A whorl fragment (NMSG Coll. PK. 7B.46.13).

Description The hook-shaped fragment measures 42 mm in maximum measurable diameter. The whorl section appears oval. The specimen is covered with constant fine ribs, which may either be bifurcated or trifurcated around in the middle of the flank or slightly towards the outer part of the flank.

Discussion The fine ribbing is similar to H. rusticus and H. studeruanus but the incomplete preservation of the specimen hinders more detailed comparisons and thus species assignment.

Occurrences Middle–late Albian (for genus).

Superfamily Turrilitoidea Gill, 1871.

Family Turrilitidae Gill, 1871.

Genus Pseudhelicoceras Spath, 1922.

Pseudhelicoceras cf. perelegans Spath, 1937.

Figure 2AK.

Synonymy

1937 Pseudhelicoceras perelegans, Spath, 1937, p. 531, text-fig. 190g, 190h, 190i, 190j, 190k.

1978 Pseudhelicoceras perelegans, Klinger and Kennedy, p. 40.

Type: Pseudhelicoceras perelegans Spath, 1937, p. 531, text-fig. 190g, 190h, 190i.

Material A small fragment (NMSG Coll. PK. 7B.46.94). From Escragnolles, France, middle Albian.

Description The specimen measures 15 mm in maximal measurable conch diameter. The whorl section is broadly rounded with a maximal height of 9 mm. Oblique and fine ribs are equally spaced, each of which bears three rows of tubercles. 8 ribs per quarter whorl are present, which are neither bifurcated nor looped.

Discussion Our specimen resembles the types of P. elegans, P. perelegans and P. pseudelegans in having moderately sized tubercles on every rib but it shows the closest similarity to P. perelegans in having closely spaced ribs. However, the two species may fall within one species showing intraspecific and/or ontogenetic morphological.

Occurrences Late Albian. England.

Pseudhelicoceras robertianum robertianum (d’Orbigny, 1842).

Figure 2AJ.

Synonymy

1842 Turrilites Robertianus, d’Orbigny, p. 585, pl. 142, figs. 1–6.

1847 Turrilites Robertianus, Pictet, p. 399, pl. 15, fig. 7a, 7b, 7c, 7d.

1848 Turrilites Robertianus, Quenstedt, p. 302, pl. 22, fig. 5a, 5b.

1854 Helicoceras Robertianus, Pictet, p. 713, pl. LVI, fig. 10.

1859 Turrilites Robertianus, Chenu, p. 96, text-fig. 422.

1880 Turrilites Robertsoni, Wright, p. 244, fig. 144.

1932 Turrilites (Helicoceras?) Roberti, Collignon, p. 18, pl. I, fig. 21, 21a, text-fig. 23.

1937 Pseudhelicoceras robertianum, Spath, p. 532, pl. LVIII, figs. 34-37, text-figs. 187a, 187b, 187c, 187d, 187e, 189b.

1957 Turrilites robertianus, Sornay, fig. 1–8.

1965 Pseudhelicoceras robertianum, Clark, p. 38, pl. 8, fig. 5, pl. 9, fig. 5, pl. 10, fig. 1.

1965 Pseudhelicoceras robertianum, Clark, p. 38, pl. 8, fig. 8, pl. 9, fig. 4, pl. 10, fig. 5.

1968 Pseudhelicoceras robertianum, Wiedmann and Dieni, p. 75, pl. VIII, fig. 12a, 12b, text-fig. 54.

1978 Anisoceras (Pseudhelicoceras) robertianus, Scholz, p. 43, pl. 3, fig. 3.

1978 Pseudhelicoceras robertianum, Klinger and Kennedy, p. 40, pl. 1. fig. I.

1979 Anisoceras (Pseudhelicoceras) robertianus, Scholz, p. 30, pl. 6, figs. 5a, 5b, 5c, 6a, 6b, 7a, 7b, 8, 9a, 9b, 10 11, text-fig. 9A, 9B, 9C.

1985 Pseudhelicoceras robertianum, Atabekian, p. 23, pl. 1, figs. 1–5, pl. II, figs. 1–3.

1987 Pseudhelicoceras robertianum, Atabekian, p. 16, pl. I, figs. 1–5, pl. II, figs. 1–3.

1994 Pseudhelicoceras robertianum, Emerson et al., p. 291.

2006 Pseudhelicoceras robertianum, Gauthier et al., p. 169, pl. 47, figs. 7–10.

2014 Pseudhelicoceras robertianum, Mosavinia et al., p. 84, fig. 8D1, 8D2.

Lectoype Turrilites robertianus d’Orbigny, p. 585, pl. 142, figs. 1–6.

Material A small fragment (NMSG Coll. PK. 7B.46.88). From Pertes du Rhône, France, late Albian.

Description The specimen measures 14 mm in maximal measurable conch diameter. The whorl section is broadly rounded with the maximal height of 6.5 mm. Equally spaced main ribs bear four rows of round tubercles. The main ribs are intercalated by two fine secondary ribs.

Discussion Our specimen resembles the type of d’Orbigny (1842) in ribbing and tuberculation.

Occurrences Late Albian. France, England, Germany, Switzerland, Austria, Hungary, Turkmenistan, Iran, Madagascar, Texas.

Superfamily Scaphitaceae Gill, 1871.

Family Sacphitidae Gill, 1871.

Subfamily Scaphitinae Gill, 1871.

Genus Eoscaphites Breistroffer, 1947.

Eoscaphites kuersteineri sp. nov.

Figure 2AM–AP.

Holotype Complete adult specimen NMSG Coll. PK. 7B.46.07.

Stratum typicum Condensed horizon of middle–late Albian.

Type locality Semelenberg, northern Alpstein, St. Gallen, Switzerland.

Derivatio nominis Honoring Peter Kürsteiner (St. Gallen), who discovered the holotype and found many of the specimens described here. He also invested a lot of time into the investigation of the paleontology and the mineralogy of the Alpstein massif.

Diagnosis Eoscaphites with coarse ribbing and hook-shaped body chamber, which is tightly coiled to the extent that the terminal aperture almost reaches the phragmocone.

Description The mature specimen measures 32 mm in maximal diameter. The juvenile whorls are normally coiled. The phragmocone is sub-evolute (uw/dm = 0.33) and thinly pachyconic (ww/dm = 0.69). The end of normal coiling is reached near the end of the phragmocone. The body chamber forms the characteristic hook with a nearly straight portion, which is markedly inflated, and with a strongly recurved terminal part. The dorsal edge of the terminal aperture almost reaches the shaft, thus enclosing a drop-shaped secondary umbilical opening. The recurved terminal part of the last whorl is much narrower than the bulging shaft. The whorl section of the body chamber is weakly to moderately depressed (ww/wh = 1.5). The ribbing is fine on the phragmocone and becomes rather coarse on the body chamber (approximately 27 ribs). On the hook, the ribs are simple and straight on the shaft and rursiradiate, curved and bifurcating on the recurved part. A distinct constriction follows directly behind the terminal aperture.

Discussion The present species is morphologically the closest to E. subcircularis in having a similar umbilical width in the phragmocone. Although the holotype in Spath (1937) appears crushed, the hypotypes show this similarity. The hypotypes of H. subcircularis differ from the present species in having shorter body chambers than our specimen and in having a finer ribbing on the body chamber (MHNG Wi ‘Sc’/2: 28 ribs: MGL 12342 Coll. Campiche: 32 ribs). In addition, the body chamber of the present species is more tightly recurved than in the other species. The aperture almost reaches back to the phragmocone. E. tenuicostatus differs from the present species in having a larger proportion of phragmocone in relation to the maximum diameter, a less conspicuous ribbing and a more openly coiled body chamber. E. chardensis has a more tightly coiled phragmocone. E. circularis has a much wider umbilical width of the phragmocone. The types of E. circularis lack the body chamber and thus we only know that it is not tightly coiled.

Occurrences As in the holotype.

Discussion

We calculated the two diversity indices for the Albian Semelenberg fauna. Given the high abundance of Beudanticeras cf. beudanti, Mortoniceras sp. and Hysteroceras sp., we assume that the age of the fauna is more or less comparable to that of the early late Albian fauna ‘Paleoecology 4′ (northeastern Alpstein) in Tajika et al. (2017a). When the compositions of each fauna are compared, they are similar in terms of the dominance of pelagic and predatory organisms such as normally coiled (Desmoceratidae, Brancoceratidae) and heteromorphic (Hamitidae and Anisoceratidae) ammonites (Fig. 3), while the relative abundance of benthic organisms such as Inoceramidae is much higher in the northeastern Alpstein (‘Paleoecology 4′ in Tajika et al. 2017a). Furthermore, the trophic nucleus (ecologically important groups) in the Semelenberg fauna holds a much lower proportion of benthic organisms (Inoceramidae, Turbinidae; 15%) than in that of NE Alpstein (Inoceramidae: 32%). This higher abundance of benthic organisms (Fig. 3) may be rooted in a slightly shallower water depth in the northeastern Alpstein (Tajika et al. 2017a) than in Semelenberg (this study) which is located slightly farther east in the Alpstein. As discussed by Tajikaet al. (2017a), the fact that there is an eastward deepening gradient in the Alpstein may have led to a differentiation in bathymetry between the two localities, although they are reasonably close. Nevertheless, the bathymetrical difference was not large enough to yield two different ecological structures, given that the occupied ecologies in both faunas are almost identical.

In addition, the diversity indices of the two faunas appear to show quite a high similarity (Table 1). When both sample sizes are rarefied to 70, the diversity indices have a similar value (familial taxonomic richness around 16; ecological disparity slightly less than 6). As discussed above, both faunas are dominated by pelagic predators, indicating that the water was sufficiently deep for pelagic animals to thrive. In the context of paleoecological changes from the Barremian to the Cenomanian that were demonstrated by Tajika et al. (2017a), the moderately diverse fauna of Semelenberg in the (middle to) late Albian appears to be consistent, thus confirming the results of Tajika et al. (2017a). That is, the taxonomic richness in the Alpstein between the early Barremian and early Cenomanian was relatively persistent, whereas the ecological disparity rather fluctuated. As discussed before, there were slight differences in faunal composition between the different localities of the area with more or less the same age. Analyses of additional assemblages of other outcrops will help to better reconstruct the paleoenvironment and paleocommunities as well as their changes through time.

Conclusions

  1. 1.

    We document here eight ammonite species including the new species Eoscaphites kuersteineri sp. nov. from Semelenberg, northeastern Alpstein. Four of those species are recorded from Switzerland for the first time.

  2. 2.

    Our paleoecological analysis revealed that the fauna was dominated by pelagic and predatory organisms (mostly ammonites), followed by some epibenthic organisms with suspension and grazing feeding strategies. Familial taxonomic richness is 28 and ecological disparity is 8 in the Semelenberg fauna (Semelenberg Nord II: most likely late Albian).

  3. 3.

    When the diversity of the Semelenberg fauna has been compared with previous studies, it appears that the taxonomic richness and ecological disparity in Semelenberg and other localities in the northeastern Alpstein (Tajika et al. 2017a) of more or less the same age are similarly high. This confirms the pattern of paleoecological changes from the Barremian to the Cenomanian proposed in Tajika et al. (2017a).

References

  • Amédro, F. (2002). Plaidoyer pour un étage Vraconnien entre l’Albien sensu stricto et le Cénomanien (système Crétacé). Publication de la Classe des Sciences, Académie Royale de Belgique, 3(4), 1–128.

    Google Scholar 

  • Atabekian, A. A. (1985). Turrilitids of the Late Albian and Cenomanian of the southern part of USSR. AH CCCP, Trudy, 14, 1–112.

    Google Scholar 

  • Atabekian, A. A. (1987). Turrilitidae de l’Albien supérieur et du Cénomanien du sud de l’URSS. Traduction de Ashot A. Atabekian, 1985 par J. Pietresson de Saint Aubin. Association Géologique Auboise. 1–86.

  • Atabekian, A. A. (1992). p. 201–212. In Zonova, T. D., & Rostovtsev, K. O. (Eds.) Atlas of leading guide fossils of the southern and eastern USSR. “NEDRA,” St. Petersburg, pp. 1–376.

  • Breistroffer, M. (1947). Sur les zones d’ammonites dans l’Albien de France et d’Angleterre. Travaux du Laboratoire Géologie de la Faculté des Sciences de Grenoble, 26, 17–104.

    Google Scholar 

  • Breistroffer, R. (1953) Commentaires taxonomiques. In: Breistroffer, M. & de Villoutreys, O. (Eds.), Les ammonites albiennes de Peille (Alpes-Maritimes). Travaux du Départment du Laboratoire de Géologie de l’Université de Grenoble, 30, 69–74.

  • Brongniart, A. (1822). Sur quelques terrains de Craie hors du Bassin de Paris. In: Cuvier, G., & Brongniart, A. (Eds.), Description géologique des environs de Paris, 8 + 428 p.

  • Bulot, L. (2010). Appendix: systematic paleontology of Aptian and Albian ammonites from southwest Iran. Carbon-isotope Stratigraphy, Biostratigraphy and Organic Matter Distribution in the Aptian e Lower Albian Successions of Southwest Iran (Dariyan and Kazhdumi Formations). Geo Arabia Special Publications, 4, 167–197.

    Google Scholar 

  • Bush, A. M., Bambach, R. K., & Daley, G. M. (2007). Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33(01), 76–97.

    Article  Google Scholar 

  • Chenu, J. C. (1859). Manuel de Conchyliologie et de Paléontologie conchyliologique. Tome premier. Paris. Librarie Victor Masson: i–vii, 1–508.

  • Chiriac, M. (1981). Amoniti cretacici din Dobrogia de Sud (pp. 1–43). Studiu biostratigraphic: Academiei Republicii Socialiste Romania, Bucurest.

    Google Scholar 

  • Clark, D. L. (1965). Heteromorph ammonoids from the Albian and Cenomanianof Texas and adjacent areas. Geological Society of America Memoir, 95, 1–99.

    Article  Google Scholar 

  • Colleté, C., Destombes, P., Fricot, C., de Saint, P., & Aubin, J. (1982). Les fossils de l’Albien de l’Aube, avec atlas photographique (pp. 1–100). Troyes: Association Géologique Auboise.

    Google Scholar 

  • Collignon, M. (1932). Les Ammonites pyriteuses de l’Albien supérieur du Mont Raynaud à Madagascar. Annales géologique du Service des Mines, Madagascar, fascicule, 2, 2–36.

    Google Scholar 

  • Collignon, M. (1951). Recherches sur les faunes albiennes de Madagascar. V. L’Albien S upérieur d ‘Andranofotsy(C ercled e Manja) avec une notice stratigraphique par P. Hirtz. Annales géologiques du Service des Mines de Madagascar, 19, 1–41.

    Google Scholar 

  • Collignon, M. (1963). Atlas des Fossiles caractéristique de Madagascar (Ammonites), Fascicule X (Albien) (pp. 1–184). Tananarive: Republic de Madagascar, Service Géologique.

    Google Scholar 

  • Collignon, M. (1967). Atlas des fossiles caracteristiques de Madagascar (Ammonites). X. Albien (pp. 1–184). Tananarive: Service géologique.

    Google Scholar 

  • Cooper, M. R. (1982). Lower Cretaceous (Middle Albian) ammonites from Dombe Grande, Angola. Annals of the South African Museum, 89(5), 265–314.

    Google Scholar 

  • Cooper, M. R. (2012). New names for late jurassic-cretaceous ammonites. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 266, 185–186.

    Article  Google Scholar 

  • d’Orbigny, A. (1841–1842). Paléontologie française. Terrains Crétacés. I: Céphalopodes. Masson, Paris, 1–662.

  • d’Orbigny, A. (1850). Prodrome de Paléontologie stratigraphique universelle des animaux mollusques & rayonées faisant suite au cours élémentaire de paléontologie et géologie stratigraphique. Paris, vol. I, 1– 394, vol. II, 1–427.

  • Douvillé, H. (1912). Note accompagnant la présentation de l’ Atlas de t. iv de l’Explication de la Carte géologique de France de E. Bayle et R. Zeiller. Bulletin de la Société Géologique de France, 3(7), 91e92.

    Google Scholar 

  • Emerson, L., Emerson, J. H., Akers, E., & Akers, T. J. (1994). Texas Cretaceous ammonites and nautiloids. Texas Paleontology Series, 5, 1–439.

    Google Scholar 

  • Fallot, J. E. (1885). Étude geologique sur les étages moyens et supérieurs du Terrain Crétacé. Annales des Sciences géologiques, 18(1), 1–262.

    Google Scholar 

  • Föllmi, K. (1989a). Mid-Cretaceous platform drowning, current-induced condensation and phosphogenesis, and pelagic sedimentation along the eastern Helvetic shelf (northern Tethys margin). Cretaceous of the Western Tethys: Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung (pp. 585–606).

  • Föllmi, K. B. (1989b). Beschreibung neugefundener Ammonoidea aus der Vorarlberger Garschella Formation (Aptian-Albian). Jahrbuch der Geologischen Bundesanstalt Wien, 132(1), 105–189.

    Google Scholar 

  • Föllmi, K. (1989b). Evolution of the mid-Cretaceous triad: Platform carbonates, phosphatic sediments, and pelagic carbonates along the northern Tethys margin. Lecture Notes in Earth Sciences, 23, 1–153. Berlin: Springer.

  • Föllmi, K., Bodin, S., Godet, A., Linder, P., & Van De Schootbrugge, B. (2007). Unlocking paleo-environmental information from Early Cretaceous shelf sediments in the Helvetic Alps: Stratigraphy is the key! Swiss Journal of Geosciences, 100(3), 349–369.

    Article  Google Scholar 

  • Föllmi, K., & Ouwehand, P. (1987). Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs. Eclogae Geologicae Helvetiae, 80(1), 141–191.

    Google Scholar 

  • Förster, R. (1975). Die geologische Entwicklung von sud-Mozambique seit der Unterkreide und die Ammoniten-Fauna von Unterkreide und Cenoman. Geologisches Jahrbuch, B, 12, 3–324.

    Google Scholar 

  • Gauthier, H. (2006). Révision critique de la Paléontologie Française d’Alcide d’Orbigny. In I. V. Volume (Ed.), Céphalopodes Crétacés (pp. 1–292). Leiden: Backhuys.

    Google Scholar 

  • Gill, T. (1871). Arrangement of the families of mollusks. Smithsonian Miscellaneous Collections 227 xvi + 49 p.

  • Grossouvre, A. D. (1894). Recherches sur la Craie supérieure. Deuxiéme partie: Paléontologie. Les ammonites de la Craie supérieure. Mémoires du Sérvice de la Carte Géologique Détaillée de la France. (Vol. 1893).

  • Hammer, Ø., Harper, D., & Ryan, P. (2001). Paleontological statistics software: Package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Hebert, E., & Munier-Chalmas, E. P. A. (1875). Fossiles du Bassin d’Uchaux. Annales des Sciences Geologiques, Paris, 6, 113–132.

    Google Scholar 

  • Hyatt, A. (1889). Genesis of the Arietidae. Smithsonian Contributions to Knowledge 673, Washington, DC xi, 16.

  • Hyatt, A. (1900). Cephalopoda. In: Zittel, K.A.V. (Ed.), Textbook of Palaeontology. Eastman (pp. 502–592), London and New York.

  • Hyatt, A. (1903). Pseudoceratites of the cretaceous. Monographs of the United States Geological Survey, 44, 128–144.

    Google Scholar 

  • Jerdon, T. C. (1870) Notes on Indian herpetology. In Proceedings of the Asiatic Society of Benga, Vol. 1870 l (pp. 66–85).

  • Kennedy, W. J., Bilotte, M., & Hansottek, M. (1997). Albian ammonite faunas from the Pech de Foix (Ariège, France). Bulletin du Centre de Recherche Elf Exploration-Production, 21, 457–499.

    Google Scholar 

  • Kennedy, W., & Delamette, M. (1994). Lyelliceratidae and Flickiidae (Ammonoidea) from the Upper Albian of the Helvetic Shelf (Western Alps, France and Switzerland). Journal of Paleontology, 68(6), 1263–1284.

    Article  Google Scholar 

  • Kennedy, W., Gale, A., Hancock, J., Crampton, J., & Cobban, W. (1999). Ammonites and inoceramid bivalves from close to the Middle-Upper Albian boundary around Fort Worth, Texas. Journal of Paleontology, 73(6), 1101–1125.

    Article  Google Scholar 

  • Kennedy, W., Jagt, J., Amédro, F., & Robaszynski, F. (2008). The late late Albian (Mortoniceras fallax Zone) cephalopod fauna from The Bracquegnies Formation at Strépy-Thieu (Hainaut, Southern Belgium). Geologica Belgica, 11, 35–69.

    Google Scholar 

  • Klinger, H. C., & Kennedy, W. J. (1978). Turrilitidae (Cretaceous Ammonoidea) from South Africa, with a discussion of the evolution and limits of the family. Journal of Molluscan Studies, 44, 1–48.

    Google Scholar 

  • Kürsteiner, P., & Klug, C. (2018). Fossilien im Alpstein – Kreide und Eozän der Nordostschweiz (pp. 1–376). Schwellbrunn: Appenzeller Verlag.

    Google Scholar 

  • Malkmus, R., Manthey, U., Vogel, G., Hoffmann, P., & Kosuch, J. (2002). Amphibians and reptiles of Mount Kinabalu (North Borneo) (pp. 1–404). Rugell: A.R.G. Ganther Verlag.

    Google Scholar 

  • Mosavinia, A., Lehmann, J., & Wilmsen, M. (2014). Late Albian ammonites from the Aitamir Formation (Koppeh Dagh, northeast Iran). Cretaceous Research, 50, 72–88.

    Article  Google Scholar 

  • Neumayr, M. (1875). Die Ammoniten der Kreide und die Systematik der Ammonitiden. Zeitschrift der Deutschen Geologischen Gesellschaft, 27, 854–942.

    Google Scholar 

  • Neyman, A. (1967). Limits to the application of the ‘trophic group’ concept in benthic studies. OCEANOLOGY-Academy of Sciences of the USSR, 7(2), 149–155.

    Google Scholar 

  • Parona, C. F., & Bonarelli, G. (1897). Fossili Albiani d’Escragnolles, del Nizzardo e della Liguria occidentale. Palaeontologica Italiana, 2, 53–112.

    Google Scholar 

  • Pictet, F. J. (1847). Déscription des mollusques fossiles qui se trouvent dans les grés verts des environs de Genéve. Mémoire de la Société de Physique et d’Histoires de Genéeve, 11, 257–412.

    Google Scholar 

  • Pictet, F. J. (1854). Traité de Paléontologie. Tomé deuxiéme, 5e famille e Ammonitides, second ed. J.-B. Bailliére, Paris, 654–716.

  • Pictet, F. J., & Campiche, G. (1859). Description des fossiles du terrain crétacé des environs de Sainte-Croix, Pt. 2(1), Déscription des fossiles Matériaux pour la Paléontologie Suisse (2) Pt. 1. F. Georg, Geneva, 29–341.

  • Pictet, F. J., & Campiche, G. (1861). Matériaux pour la paléontologie Suisse. Description des fossiles du terrain Crétacé des environs de Ste. Croix. Mat. pal. Suisse, 2, 1–752.

    Google Scholar 

  • Quenstedt, F. A. (1846–1848). Cephalopoden. In: Petrefaktenkunde Deutschlands, vol. I (pp. 105–184).

  • Renz, O. (1968). Die Ammonoidea im Stratotyp des Vraconnien bei Sainte-Croix (Kanton Waadt). Schweizerische Palieontologische Abhandlungen, 87–99.

  • Robert, E. (2002). La transgression albienne dans le Bassin Andin (Pérou): Biostratigraphie, Paléontologie (ammonites) et stratigraphie séquentielle. Strata, 38, 1–380.

    Google Scholar 

  • Scholz, G. (1978). Beitrag zur Kenntnis des ostalpinen Alb. I. Oberhalb-Ammoniten aus dem Kampenwandvorland (Chiemgauer Alpen). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 18, 38–44.

    Google Scholar 

  • Scholz, G. (1979). Die Ammoniten des Vracon (Oberalb, Dispar-Zone) des Bakony- Gebirges (Westungarn) und eine Revision der wichtigsten Vracon-Arten der westmediterranen Faunenprovinz. Palaeontographica A, 165(1–2), 1–136.

    Google Scholar 

  • Scott, G. (1928). Ammonites of the genus Dipoloceras, and a new Hamites from the Texas Cretaceous. Journal of Paleontology, 2, 108–118.

    Google Scholar 

  • Seeley, H. G. (1865). On Ammonites from the Cambridge Greensand. Annals and Magazine of Natural History, 3(16), 225–247.

    Article  Google Scholar 

  • Sornay, J. (1957). Turrilites robertianus d’Orbigny, 1840. Palaentologia Universalis (new species), fiche n° 127, 4.

  • Sowerby, J. (1814). The mineral conchology of Great Britain. pls. 45–78.

  • Sowerby, J. (1817). The mineral conchology of Great Britain. pls. 151–186.

  • Sowerby, J. (1821). The mineral conchology of Great Britain. pls. 272–306.

  • Sowerby, J. (1824). The mineral conchology of Great Britain. pls. 444–485.

  • Spath, L. F. (1921). On Cretaceous Cephalopoda from Zululand. Annals of the South African Museum, 12, 217–321.

    Google Scholar 

  • Spath, L. F. (1922). On Cretaceous Ammonoidea from Angola, collected by Professor J.W. Gregory, D. Sc., F.R.S. Transactions of the Royal Society of South Africa, 53, 91–160.

    Google Scholar 

  • Spath, L. F. (1925). On Upper Albian Ammonoidea from Portuguise East Africa, with an appendix on upper cretaceous ammonites from Maputoland. Annals of the Transvaal Museum, 11, 179–200.

    Google Scholar 

  • Spath, L. F. (1926). A Monograph of the Ammonoidea of the Gault. Part 4. Palaeontographical Society Monographs, 147–186.

  • Spath, L. F. (1931). A Monograph of the Ammonoidea of the Gault. Part 8. Palaeontographical Society Monographs, 313–378.

  • Spath, L. F. (1937). A Monograph of the Ammonoidea of the Gault. Part 12. Palaeontographical Society Monographs, 497–540.

  • Spath, L. F. (1939). A Monograph of the Ammonoidea of the Gault. Part 13. Palaeontographical Society Monographs, 541–608.

  • Spath, L. F. (1941). A Monograph of the Ammonoidea of the Gault. Part 14. Palaeontographical Society Monographs, 609–668.

  • Sulser, H., Friebe, G., & Kürsteiner, P. (2013). Little-known brachiopods from the Cretaceous of the Helvetic realm of NE Switzerland (Alpstein) and W Austria (Vorarlberg). Swiss Journal of Geosciences, 106(2), 397–408.

    Article  Google Scholar 

  • Tajika, A., Kürsteiner, P., & Klug, C. (2017a). Ecological disparity is more susceptible to environmental changes than familial taxonomic richness during the Cretaceous in the Alpstein region (northeastern Switzerland). Swiss Journal of Palaeontology, 1–16. https://doi.org/10.1007/s13358-017-0140-y

  • Tajika, A., Kürsteiner, P., Pictet, A., Lehmann, J., Tschanz, K., Jattiot, R., et al. (2017b). Cephalopod associations and paleoecology of the Cretaceous (Barremian–Cenomanian) succession of the Alpstein, northeastern Switzerland. Cretaceous Research, 70, 15–54.

    Article  Google Scholar 

  • Van Hoepen, E. C. N. (1931). Die Krytfauna van Soeloeland. 2. Voorlopige beskrywing van einige Soeloelandse ammoniete. 1. Lophoceras, Rhytidoceras, Drepanoceras en Deiradoceras. Paleontologiese Navorsing van die Nasionale Museum, Bloemfontein, 1, 39–54.

    Google Scholar 

  • White, C. A. (1887). Contribuições a palaeontologia do Brazil. Archos Museu Nacional do Rio de Janeiro, 7, 1–273.

    Google Scholar 

  • Wiedmann, J. (1966). Stammesgeschichte und System der posttriadischen Ammonoideen. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 127, 13–81.

    Google Scholar 

  • Wiedmann, J., & Dieni, I. (1968). Die Kreide Sardiniens und ihre Cephalopoden. Palaeontographia Italica, 64, 1–171.

    Google Scholar 

  • Wright, T. (1880). Modern classification of the Ammonitidae. In: Monograph on the Lias ammonites of the British Islands. Palaeontographical Society. London, 219–262.

  • Wright, C. W., & Kennedy, W. J. (1978). The Ammonite Stoliczkaia from the Cenomanian of England and northern France. Palaeontology, 21, 393–409.

    Google Scholar 

  • Wright, C. W., & Kennedy, W. J. (1994). Evolutionary relationships among Stoliczkaiinae (Cretaceous ammonites) with an account of some species from the English Stoliczkaia dispar Zone. Cretaceous Research, 15, 547–582.

    Article  Google Scholar 

  • Young, K. (1966). Texas Mojsisovicziinae (Ammonoidea) and the zonation of the Fredericksburg. Geological Society of America Memoir, 100, 1–225.

    Article  Google Scholar 

  • Zittel, K. A. (1884). Abtheilung, Palaeozoologie. In: Mollusca und Arthropoda, II Band. Handbuch der Paläontologie 1 (Vol. 893, pp. 1109). Munich and Leipzig: Verlag R.

Download references

Acknowledgements

We are greatly thankful to Peter Kürsteiner (St. Gallen) for putting his collection at our disposal for this study. Heinz A. Kollmann (Vienna), Iwan Stössel (Schaffhausen), Toni Bürgin (St. Gallen) and Ursula Menkveld-Gfeller (Bern) are thanked for the taxonomic identification of some of the fossils. This study was supported by the Swiss National Science Foundation (project numbers: 200020_169847 and 200021_149119). Kenji Ikuno (Sanda) is thanked for sharing his knowledge on the International Code of Zoological Nomenclature. We appreciate the constructive reviews provided by Peter Bengtson (Heidelberg) and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amane Tajika.

Additional information

Editorial Handling: D. Harper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajika, A., Tschanz, K. & Klug, C. New Albian ammonite faunas from Semelenberg (Alpstein, Switzerland) and their paleoecology. Swiss J Palaeontol 137, 65–76 (2018). https://doi.org/10.1007/s13358-018-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13358-018-0152-2

Keywords