Aronson, R. B. (1987). Predation on fossil and Recent ophiuroids. Paleobiology, 13, 187–192.
Article
Google Scholar
Aronson, R. B. (1991). Predation, physical disturbance, and sublethal arm damage in ophiuroids: A Jurassic-Recent comparison. Marine Ecology Progress Series, 74, 91–97.
Article
Google Scholar
Baumiller, T. K. (2003). Experimental and biostratinomic disarticulation of crinoids: Taphonomic implications. In J.-P. Féral & B. David (Eds.), Echinoderm research 2001 (pp. 243–248). Lisse: Balkema.
Google Scholar
Baumiller, T. K. (2013a). Ephemeral injuries, regeneration frequencies and intensity of the injury-producing process. Marine Biology, 160, 3233–3239. https://doi.org/10.1007/s00227-013-2302-9.
Article
Google Scholar
Baumiller, T. K. (2013b). Arm regeneration frequencies in Florometra serratissima (Crinoidea, Echinodermata): Impact of depth of habitat on rates of arm loss. Cahiers de Biologie Marine, 54, 571–576.
Google Scholar
Baumiller, T. K., & Fordyce, R. E. (2018). Rautangaroa, a new genus of feather star (Echinodermata: Crinoidea) from the Oligocene of New Zealand. Journal of Paleontology, 92(872), 882. https://doi.org/10.1017/jpa.2018.17.
Article
Google Scholar
Baumiller, T. K., & Gahn, F. J. (2003). Chapter 10, predation on crinoids. In P. H. Kelley, M. Kowalewski, & T. A. Hansen (Eds.), Predator-prey interactions in the fossil record. Topics in geobiology (Vol. 20, pp. 263–278). New York: Springer.
Chapter
Google Scholar
Baumiller, T. K., & Gahn, F. J. (2004). Testing predation-driven evolution using Mid-Paleozoic crinoid arm regeneration. Science, 305, 1453–1455.
Article
Google Scholar
Baumiller, T. K., & Gahn, F. J. (2013). Reconstructing predation pressure on crinoids: Estimating arm-loss rates from regenerating arms. Paleobiology, 39, 40–51.
Article
Google Scholar
Baumiller, T. K., Mooi, R., & Messing, C. G. (2008). Urchins in the meadow: Paleobiological and evolutionary implications of cidaroid predation on crinoids. Paleobiology, 34, 22–34.
Article
Google Scholar
Baumiller, T. K., Salamon, M., Gorzelak, P., Mooi, R., Messing, C. G., & Gahn, F. J. (2010). Benthic predation drove early Mesozoic crinoid radiation. PNAS, 107, 5893–5896.
Article
Google Scholar
Brun, E. (1972). Food and feeding habits of Luidia ciliaris (Echinodermata: Asteroidea). Journal of the Marine Biological Association of the United Kingdom, 52, 225–236.
Article
Google Scholar
Clark, A. H. (1910). The origin of the crinoidal muscular articulation. American Journal of Science, 29, 40–44.
Article
Google Scholar
Emson, R. H., & Wilkie, I. C. (1980). Fission and autotomy in echinoderms. Oceanography and Marine Biology: An Annual Review, 18, 155–250.
Google Scholar
Foerste, A. F. (1893). The reproduction of arms in crinoids. American Geologist, 12, 270–271.
Google Scholar
Gahn, F. J., & Baumiller, T. K. (2005). Arm regeneration in Mississippian crinoids: Evidence of intense predation pressure in the Paleozoic? Paleobiology, 31, 151–164.
Article
Google Scholar
Gahn, F. J., & Baumiller, T. K. (2010). Evolutionary history of regeneration in crinoids (Echinodermata). Integrative and Comparative Biology, 50, 514a–514m. https://doi.org/10.1093/icb/icq155.
Article
Google Scholar
Gorzelak, P., Salamon, M. A., & Baumiller, T. K. (2012). Predator-induced macroevolutionary trends in Mesozoic crinoids. PNAS, 109, 7004–7007.
Article
Google Scholar
Hall, J. (1861). Description of new species of Crinoidea from the Carboniferous rocks of the Mississippi Valley. Journal of the Boston Society of Natural History, 7, 261–328.
Google Scholar
Messing, C. G., & Tay, T. S. (2016). Extant Crinoidea (Echinodermata) of Singapore. Raffles Bulletin of Zoology Supplement, 34, 627–658 D.
Google Scholar
Meyer, D. L. (1985). Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11, 154–164.
Article
Google Scholar
Meyer, D. L. (1988). Crinoids as renewable resources: Rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia. In R. D. Burke, P. D. Mladenov, P. Lambert, & R. L. Parsley (Eds.), Echinoderm biology (pp. 519–522). Rotterdam: A. A. Balkema.
Google Scholar
Meyer, D. L., & Ausich, W. I. (1983). Biotic interactions among Recent and fossil crinoids. In M. F. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in Recent and fossil benthic communities (pp. 377–427). New York: Plenum.
Chapter
Google Scholar
Meyer, D. L., LaHaye, C. A., Holland, N. D., Arenson, A. C., & Strickler, J. R. (1984). Time-lapse cinematography of feather stars (Echinodermata: Crinoidea) on the Great Barrier Reef, Australia: Demonstrations of posture changes, locomotion, spawning and possible predation by fish. Marine Biology, 78, 179–184.
Article
Google Scholar
Meyer, D. L., & Macurda, D. B., Jr. (1977). Adaptive radiation of comatulid crinoids. Paleobiology, 3, 74–82.
Article
Google Scholar
Meyer, D. L., & Oji, T. (1993). Eocene crinoids from Seymour Island, Antarctic Peninsula: Paleobiogeographic and paleoecologic implications. Journal of Paleontology, 67, 250–257.
Article
Google Scholar
Minckert, W. (1905). Über Regeneration bei Comatuliden nebst Ausführungen über die Auffassung und Bedeutung der syzygieen. Archiv fur Naturgeschichte, 71, 163–244.
Google Scholar
Mladenov, P. V. (1983). Rate of arm regeneration and potential causes of arm loss in the feather star Florometra serratissima (Echinodermata: Crinoidea). Canadian Journal of Zoology, 61, 2873–2879.
Article
Google Scholar
Nichols, D. (1996). Evidence for a sacrificial response to predation in the reproductive strategy of the comatulid crinoid Antedon bifida from the English Channel. Oceanologica Acta, 19, 237–240.
Google Scholar
Oji, T. (1996). Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology, 22, 339–351.
Article
Google Scholar
Oji, T. (2001). Fossil record of echinoderm regeneration with special regard to crinoids. Microscopy Research and Technique, 55, 397–402.
Article
Google Scholar
Oji, T., & Okamoto, T. (1994). Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 20, 27–39.
Article
Google Scholar
Roux, M. (1976). Aspects de la variabilité et de la croissance au sein d’une population de la pentacrine actuelle: Annacrinus wyville thompsoni Jeffreys (Crinoidea). Thalassia Jugoslavica, 12, 307–320.
Google Scholar
Schneider, J. A. (1988). Frequency of arm regeneration of comatulid crinoids in relation to life habit. In R. D. Burke, P. V. Mladenov, P. Lambert, & R. L. Parsley (Eds.), Echinoderm biology (pp. 531–538). Rotterdam: Balkema.
Google Scholar
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.
Article
Google Scholar
Schoener, T. W. (1979). Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology, 60, 1110–1115.
Article
Google Scholar
Shibata, T. F., & Oji, T. (2005). Autotomy and arm number increase in Oxycomanthus japonicus (Echinodermata, Crinoidea). Invertebrate Biology, 122, 375–379.
Article
Google Scholar
Strimple, H. L., & Beane, B. H. (1966). Reproduction of lost arms on a crinoid from Le Grand, Iowa. Oklahoma Geology Notes, 26, 35–37.
Google Scholar
Syverson, V. J., Messing, C. J., Stanley, K., & Baumiller, T. K. (2015). Growth, injury, and population dynamics in the extant cyrtocrinid Holopus mikihe (Crinoidea, Echinodermata) near Roatán, Honduras. Bulletin of Marine Science, 91, 47–61. https://doi.org/10.5343/bms.2014.1061.
Article
Google Scholar
Wachsmuth, C., & Springer, F. (1897). The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology Memoir, 20(21), 1–897.
Google Scholar
Weissmüller, A. (1998). Ein umfangreicher Fund von Encrinus liliiformis Lamarck im Oberen Muschelkalk (mo2) des Diemeltales (Nordhessen). Phillipia, 8, 245–270.
Google Scholar
Whitfield, R. P. (1904). Notice of a remarkable case of reproduction of lost parts shown on a fossil crinoid. Bulletin American Museum Natural History, 20, 471–472.
Google Scholar