Agrawal, S., Verma, P., Rao, M. R., Garg, R., Kapur, V. V., & Bajpai, S. (2017). Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. Journal of Asian Earth Sciences, 146, 296–303.
Article
Google Scholar
Ahmad, F. (2005). The heterodont bivalve Aphrodina dutrugei (Cocquand, 1862) from the Cenomanian of Jordan. Revista Italiana di Paleontologia e Stratigrafia., 111, 191–195.
Google Scholar
Allmon, W. D. (2011). Natural history of turritelline gastropods (Cerithioidea: Turritellidae): A status report. Malacologia, 54, 159–202.
Article
Google Scholar
An, W., Hu, X., Garzanti, E., Wang, J. G., & Liu, Q. (2021). New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48(3), e2020GL090641. https://doi.org/10.1029/2020GL090641
Article
Google Scholar
Anderson, L. C. (2001). Temporal and geographic size trends in Neogene Corbulidae (Bivalvia) of tropical America: Using environmental sensitivity to decipher causes of morphologic trends. Palaeogeography, Palaeoclimatology, Palaeoecology, 166(1–2), 101–120.
Article
Google Scholar
Anwar, D., Choudhary, A. K., & Saraswati, P. K. (2013). Strontium isotope stratigraphy of the Naredi Formation, Kutch Basin, India. Geological Society of India, Special Publication, 1, 298–306.
Google Scholar
Bajpai, S., Kapur, V. V., Das, D. P., Tiwari, B. N., Saravanan, N., & Sharma, R. (2005). Early Eocene land mammals from the Vastan Lignite Mine, District Surat (Gujarat), western India. Journal of the Palaeontological Society of India, 50(1), 101–113.
Google Scholar
Bajpai, S., & Thewissen, J. G. M. (2002). Vertebrate fauna from Panandhro lignite field (lower Eocene), District Kachchh, western India. Current Science, 82(5), 507–509.
Google Scholar
Banerjee, S., Das, S., Halder, K., & Chakrabarti, N. (2019). Palaeoecological analysis of Benthic Molluscs from the Eocene of Kutch, Gujarat reveals an event of storm induced concentration of shells in a quiet marginal marine environment. Journal of the Geological Society of India, 94(2), 162–170.
Article
Google Scholar
Banerjee, S., Khanolkar, S., & Saraswati, P. K. (2018). Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodinamica Acta, 30, 119–136. https://doi.org/10.1080/09853111.2018.1442609
Article
Google Scholar
Barnet, J. S., Littler, K., Westerhold, T., Kroon, D., Leng, M. J., Bailey, I., Röhl, U., & Zachos, J. C. (2019). A high-fidelity benthic stable isotope record of late Cretaceous–early Eocene climate change and carbon-cycling. Paleoceanography and Paleoclimatology, 34(4), 672–691.
Article
Google Scholar
Bayne, B. L. (2017). Biology of oysters. Academic Press.
Google Scholar
Biswas, S. K. (1992). Tertiary stratigraphy of Kutch. Journal of the Palaeontological Society of India, 37, 1–29.
Google Scholar
Biswas, S. K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88(10), 1592–1600.
Google Scholar
Castagna, M., & Chanley, P. (1973). Salinity tolerance of some marine bivalves from inshore and estuarine environments in Virginia waters on the western mid-Atlantic coast. Malacologia, 12, 47–96.
Google Scholar
Catuneanu, O., & Dave, A. (2017). Cenozoic sequence stratigraphy of the Kachchh Basin, India. Marine and Petroleum Geology, 86, 1106–1132.
Article
Google Scholar
Chaudhuri, S., De, S., Srivastava, H., Chattopadhyay, K., & Bhaumik, A. K. (2022). Multiproxy analysis constraining climatic control over the Cenozoic depositional history of Kachchh, Western India. Geological Journal. https://doi.org/10.1002/gj.4511
Article
Google Scholar
Chen, Z., Ding, Z., Tang, Z., Wang, X., & Yang, S. (2014). Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China. Geophysical Research Letters, 41(10), 3559–3564.
Article
Google Scholar
Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J. G. M., Saravanan, N., Singh, I. B., & Prasad, V. (2011). Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology, 39(1), 15–18.
Article
Google Scholar
Coan, E. V., & Valentich-Scott, P. (2012). Bivalve seashells of tropical west America (Vol. 1258). Santa Barbara Museum of Natural History.
Google Scholar
Coccioni, R., Bancalà, G., Catanzarit, R., Fornaciari, E., Frontalini, F., Giusberti, L., Jovane, L., Luciani, V., Savian, J., & Sprovieri, M. (2012). An integrated stratigraphic record of the Palaeocene–lower Eocene at Gubbio (Italy): New insights into the early Palaeogene hyperthermals and carbon isotope excursions. Terra Nova, 24(5), 380–386.
Article
Google Scholar
Collinson, M. E., Hooker, J. J., & Grocke, D. R. (2003). Cobham lignite bed and penecontemporaneous macrofloras of southern England: A record of vegetation and fire across the Paleocene–Eocene thermal maximum. Geological society of America special paperIn S. L. Wing, P. D. Gingerich, B. Schmitz, & E. Thomas (Eds.), Causes and consequences of globally warm climates in the Early Paleogene (Vol. 369, pp. 333–349). Geological Society of America.
Google Scholar
Copley, A., Avouac, J. P., & Royer, J. Y. (2010). India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research: Solid Earth, 115, B03410. https://doi.org/10.1029/2009JB006634
Article
Google Scholar
Cui, Y., & Schubert, B. A. (2017). Atmospheric pCO2 reconstructed across five early Eocene global warming events. Earth and Planetary Science Letters, 478, 225–233.
Article
Google Scholar
D’haenens, S., Bornemann, A., Claeys, P., Röhl, U., Steurbaut, E., & Speijer, R. P. (2014). A transient deep-sea circulation switch during Eocene thermal maximum 2. Paleoceanography, 29(5), 370–388.
Article
Google Scholar
Dickens, G. R., Castillo, M. M., & Walker, J. C. (1997). A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3), 259–262.
Article
Google Scholar
Dickens, G. R., O’Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10(6), 965–971.
Article
Google Scholar
Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48(5), 1573–1580.
Article
Google Scholar
Dominici, S. (2001). Taphonomy and paleoecology of shallow marine macrofossil assemblages in a collisional setting (Late Pliocene–Early Pleistocene, western Emilia, Italy). Palaios, 16, 336–353.
Article
Google Scholar
Dominici, S., & Kowalke, T. (2007). Depositional dynamics and the record of ecosystem stability: Early Eocene faunal gradients in the Pyrenean foreland, Spain. Palaios, 22, 268–284. https://doi.org/10.2110/palo.2005.p05-022r
Article
Google Scholar
D’Onofrio, R., Luciani, V., Fornaciari, E., Giusberti, L., Boscolo Galazzo, F., Dallanave, E., Westerhold, T., Sprovieri, M., & Telch, S. (2016). Environmental perturbations at the early Eocene ETM2, H2, and I1 events as inferred by Tethyan calcareous plankton (Terche section, northeastern Italy). Paleoceanography, 31(9), 1225–1247.
Article
Google Scholar
Etim, L., Sankare, Y., Brey, T., & Arntz, W. (1998). Dynamics of unexploited population of Corbula trigona (Bivalvia: Corbulidae) in a brackish-water lagoon, Cote D’lvoire. Archive of Fishery and Marine Research, 46(3), 253–262.
Google Scholar
Folie, A., Rana, R. S., Rose, K. D., Sahni, A., Kumar, K., Singh, L., & Smith, T. (2012). Early Eocene frogs from vastan lignite mine, Gujarat, India. Acta Palaeontologica Polonica, 58(3), 511–524.
Google Scholar
Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J. C., Monechi, S., Morelli, G., & Lourens, L. (2010). Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth and Planetary Science Letters, 290(1–2), 192–200.
Article
Google Scholar
Garg, R., Ateequzzaman, K., Prasad, V., Tripathi, S. K. M., Singh, I. B., Jauhri, A. K., & Bajpai, S. (2008). Age-diagnostic dinoflagellate cysts from the lignite-bearing sediments of the Vastan lignite mine, Surat District, Gujarat, western India. Journal of the Palaeontological Society of India, 53(1), 99–105.
Google Scholar
Garg, R., Prasad, V., Thakur, B., Singh, I. B., & Khowaja-Ateequzzaman. (2011). Dinoflagellate cysts from the Naredi Formation, southwestern Kutch, India: Implication on age and palaeoenvironment. Journal of the Palaeontological Society of India, 56(2), 201–218.
Google Scholar
Gervis, M. H., & Sims, N. A. (1992). The biology and culture of pearl oysters (Bivalvia: Pteriidae) (pp. 1–49). International Center for Living Aquatic Resources Management Studies and Reviews.
Google Scholar
Gibson, T. G., Bybell, L. M., & Owens, J. P. (1993). Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography, 8(4), 495–514.
Article
Google Scholar
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., & Oddone, M. (2007). Mode and tempo of the Paleocene–Eocene thermal maximum in an expanded section from the Venetian pre-Alps. Geological Society of America Bulletin, 119(3–4), 391–412.
Article
Google Scholar
Halder, K., & Das, S. (2019). New subfamily Indovolutinae and other volutids (Volutidae, Gastropoda) from the Eocene of Kutch, western India and their paleobiogeographic implications. Journal of Paleontology, 93(5), 899–915.
Article
Google Scholar
Halder, K., & Mitra, A. (2021). Facultative monogamy in an early Eocene brooding oyster and its evolutionary implications. Acta Palaeontologica Polonica, 66(3), 647–662.
Google Scholar
Harding, I. C., Charles, A. J., Marshall, J. E., Pälike, H., Roberts, A. P., Wilson, P. A., Jarvis, E., Thorne, R., Morris, E., Moremon, R., & Pearce, R. B. (2011). Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen. Earth and Planetary Science Letters, 303(1–2), 97–107.
Article
Google Scholar
Hare, V. J., Loftus, E., Jeffrey, A., & Ramsey, C. B. (2018). Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nature Communications, 9, 252. https://doi.org/10.1038/s41467-017-02691-x
Article
Google Scholar
Heaslip, W. G. (1968). Cenozoic evolution of the alticostate venericards in Gulf and East Coastal North America. Palaeontographica Americana, 6, 55–135.
Google Scholar
Hesse, R., & Schacht, U. (2011). Early diagenesis of deep-sea sediments. Developments in Sedimentology, 63, 557–713.
Article
Google Scholar
Höntzsch, S., Scheibner, C., Guasti, E., Kuss, J., Marzouk, A. M., & Rasser, M. W. (2011). Increasing restriction of the Egyptian shelf during the Early Eocene?—New insights from a southern Tethyan carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(3–4), 349–366.
Article
Google Scholar
Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India-Asia collision onset–Facts, theories, controversies. Earth-Science Reviews, 160, 264–299.
Article
Google Scholar
Jadoon, U. F., Huang, B., Shah, S. A., Rahim, Y., Khan, A. A., & Bibi, A. (2021). Multi-stage India-Asia collision: Paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya. GSA Bulletin. https://doi.org/10.1130/B36116.1
Article
Google Scholar
Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B., Miller, K. G., Rosenthal, Y., & Wright, J. D. (2010). Traditional and emerging geochemical proxies in Foraminifera. Journal of Foraminiferal Research, 40(2), 165–192.
Article
Google Scholar
Khanolkar, S., & Saraswati, P. K. (2019). Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology. Journal of Palaeogeography, 8(1), 1–16.
Article
Google Scholar
Khozyem, H., Adatte, T., Keller, G., & Spangenberg, J. E. (2021). Organic carbon isotope records of the Paleocene–Eocene thermal maximum event in India provide new insights into mammal origination and migration. Journal of Asian Earth Sciences, 212, 104736.
Article
Google Scholar
Khozyem, H., Adatte, T. H., Keller, G., Spangenberg, J. E., Saravanan, N., & Bajpai, S. (2013). Paleoclimate and Paleoenvironment of the Naredi Formation (Early Eocene), Kutch, Gujarat, India. Geological Society of India Special Publication, 1, 165–182.
Google Scholar
Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology & (paleo) climate. Proceedings of the National Academy of Sciences, 107(46), 19691–19695.
Article
Google Scholar
Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20(2), 211–226.
Article
Google Scholar
Kumar, K., Rana, R. S., & Singh, H. (2007). Fishes of the Khuiala Formation (Early Eocene) of the Jaisalmer Basin, Western Rajasthan, India. Current Science, 93, 553–559.
Google Scholar
Kumar, V., Tiwari, M., Nagoji, S., & Tripathi, S. (2016). Evidence of anomalously low δ13C of marine organic matter in an Arctic fjord. Scientific Reports, 6, 36192. https://doi.org/10.1038/srep36192
Article
Google Scholar
Lauretano, V., Littler, K., Polling, M., Zachos, J. C., & Lourens, L. J. (2015). Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Climate of the Past, 11(10), 1313–1324.
Article
Google Scholar
Lécuyer, C., Reynard, B., & Martineau, F. (2004). Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chemical Geology, 213(4), 293–305.
Article
Google Scholar
Lenz, O. K., Montag, M., Wilde, V., Methner, K., Riegel, W., & Mulch, A. (2021). Early Eocene carbon isotope excursions in a lignite bearing succession at the southern edge of the proto-North Sea (Schöningen, Germany). Climate of the Past Discussions. https://doi.org/10.5194/cp-2021-81
Article
Google Scholar
Leon-Rodriguez, L., & Dickens, G. R. (2010). Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3–4), 409–420.
Article
Google Scholar
Lomax, B. H., Lake, J. A., Leng, M. J., & Jardine, P. E. (2019). An experimental evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochimica et Cosmochimica Acta, 247, 162–174.
Article
Google Scholar
Lourens, L. J., Sluijs, A., Croon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., & Raffi, I. (2005). Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 453, 1083–1087. https://doi.org/10.1038/nature03814
Article
Google Scholar
Mathews, R. P., Singh, B. D., Singh, H., Singh, V. P., & Singh, A. (2018). Characterization of Panandhro Lignite deposits (Kachchh Basin), western India: Results from the bulk geochemical and palynofloral compositions. Journal of the Geological Society of India, 91(3), 281–289.
Article
Google Scholar
McClure, K. J., & Lockwood, R. (2015). Relationships among Venericardia (Bivalvia: Carditidae) on the US Coastal Plain during the Paleogene. Journal of Paleontology, 89(3), 522–531.
Article
Google Scholar
McInerney, F. A., & Wing, S. L. (2011). The Paleocene–Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489–516. https://doi.org/10.1146/annurev-earth-040610-133431
Article
Google Scholar
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346.
Article
Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea-level change. Science, 310(5752), 1293–1298.
Article
Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. & Browning, J. V. (2011). A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24(2), 40–53.
Article
Google Scholar
Mochales, T., Barnolas, A., Pueyo, E. L., Serra-Kiel, J., Casas, A. M., Samsó, J. M., Ramajo, J., & Sanjuán, J. (2012). Chronostratigraphy of the Boltaña anticline and the Ainsa Basin (southern Pyrenees). Bulletin, 124(7–8), 1229–1250.
Google Scholar
Moussavou, B. M. (2015). Bivalves (Mollusca) from the Coniacian-Santonian Anguille Formation from Cap Esterias, northern Gabon, with notes on paleoecology and paleobiogeography. Geodiversitas, 37(3), 315–324.
Article
Google Scholar
Patriat, P., & Achache, J. (1984). India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311(5987), 615–621.
Article
Google Scholar
Paul, S., Sharma, J., Singh, B. D., Saraswati, P. K., & Dutta, S. (2015). Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. International Journal of Coal Geology, 149, 77–92.
Article
Google Scholar
Pérez, D. E. (2019). Phylogenetic relationships of the family Carditidae (Bivalvia: Archiheterodonta). Journal of Systematic Palaeontology, 17(16), 1359–1395.
Article
Google Scholar
Pietsch, C., Harrison, H. C., & Allmon, W. D. (2016). Whence the Gosport Sand (upper middle Eocene, Alabama)? The origin of glauconitic shell beds in the Paleogene of the U.S. Gulf Coastal Plian. Journal of Sedimentary Research, 86, 1249–1268. https://doi.org/10.2110/jsr.2016.72
Article
Google Scholar
Pujalte, V., Schmitz, B., & Baceta, J. I. (2014). Sea-level changes across the Paleocene–Eocene interval in the Spanish Pyrenees, and their possible relationship with North Atlantic magmatism. Palaeogeography, Palaeoclimatology, Palaeoecology, 393, 45–60.
Article
Google Scholar
Punekar, J., & Saraswati, P. K. (2010). Age of the Vastan Lignite in context of some oldest Cenozoic fossil mammals from India. Journal of the Geological Society of India, 76(1), 63–68.
Article
Google Scholar
Rana, R. S., Aug, M., Folie, A., Rose, K. D., Kumar, K., Singh, L., Sahni, A., & Smith, T. (2013). High diversity of acrodontan lizards in the Early Eocene Vastan Lignite Mine of India. Geologica Belgica, 16, 290–301.
Google Scholar
Rao, M. R., Sahni, A., Rana, R. S., & Verma, P. (2013). Palynostratigraphy and depositional environment of Vastan lignite mine (Early Eocene), Gujarat, western India. Journal of Earth System Science, 122(2), 289–307.
Article
Google Scholar
Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Singh, L., & Smith, T. (2009). First tillodont from India: Additional evidence for an early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica, 54(2), 351–355.
Article
Google Scholar
Roy, P., & Mukherjee, P. (2017). Corbulid (Bivalvia) species from the Paleogene Mangrol Lignite Mine of Surat, Gujarat. Journal Geological Society of India, 89, 315–320.
Article
Google Scholar
Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., & Kraemer, M. S. (2010). Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences, 107(43), 18360–18365.
Article
Google Scholar
Sahay, V. K. (2011). The hydrocarbon potential, thermal maturity, sequence stratigraphic setting and depositional palaeoenvironment of carbonaceous shale and lignite successions of Panandhro, northwestern Kutch Basin, Gujarat, Western India. Central European Journal of Geosciences, 3, 12–28.
Google Scholar
Samanta, A., Bera, M. K., Ghosh, R., Bera, S., Filley, T., Pande, K., Rathore, S. S., Rai, J., & Sarkar, A. (2013). Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 91–103.
Article
Google Scholar
Samanta, A., Bera, M. K., & Sarkar, A. (2016). Climate-modulated sequence development in a tropical rift basin during the Late Palaeocene to Early Eocene super greenhouse Earth. Sedimentology, 63(4), 917–939.
Article
Google Scholar
Saraswati, P. K., Khanolkar, S., & Banerjee, S. (2018). Paleogene stratigraphy of Kutch, India: An update about progress in foraminiferal biostratigraphy. Geodinamica Acta, 30(1), 100–118.
Article
Google Scholar
Saraswati, P. K., Khanolkar, S., Raju, D. S. N., & Banerjee, S. (2016). An updated Eocene stratigraphy of Kutch. Special Publication of the Geological Society of India, 6, 25–31.
Google Scholar
Saraswati, P. K., Sarkar, U., & Banerjee, S. (2012). Nummulites solitarius—Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi Formation. Journal of the Geological Society of India, 79(5), 476–482.
Article
Google Scholar
Schubert, B. A., & Jahren, A. H. (2012). The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochimica et Cosmochimica Acta, 96, 29–43.
Article
Google Scholar
Schubert, B. A., & Jahren, A. H. (2013). Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels. Nature Communications, 4(1), 1–6.
Article
Google Scholar
Schulte, P., Scheibner, C., & Speijer, R. P. (2011). Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene thermal maximum in the Dababiya Quarry section, Egypt. Chemical Geology, 285(1–4), 167–183.
Article
Google Scholar
Scotese, C. R. (2016). Tutorial: PALEOMAP paleo Atlas for GPlates and the paleoData plotter program. http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/
Secord, R., Gingerich, P. D., Lohmann, K. C., & MacLeod, K. G. (2010). Continental warming preceding the Palaeocene–Eocene thermal maximum. Nature, 467(7318), 955–958.
Article
Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., & Schaub, H. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France, 169(2), 281–299.
Google Scholar
Shukla, A., Singh, H., & Mehrotra, R. C. (2019). Fossil Wood of Subfamily Detarioideae (family Fabaceae) from the Paleogene of the Indian Subcontinent: Origin and Palaeo-dispersal Pathways. Journal of the Geological Society of India, 94(4), 411–415.
Article
Google Scholar
Singh, H. (2021). Palaeoenvironmental and taphonomic biases in palynological assemblages preserved in amber versus sediments from the Umarsar Lignite, Kutch Basin, Gujarat, India. Historical Biology, 33(10), 2305–2315.
Article
Google Scholar
Singh, P. K., Singh, V. K., Singh, M. P., & Rajak, P. K. (2017). Understanding the paleomires of Eocene lignbites of Kachchh Basin, Gujarat (Western india): Petrological implications. International Journal of Coal Science and Technology, 4(2), 80–101. https://doi.org/10.1007/s40789-017-0165-2
Article
Google Scholar
Slotnick, B. S., Dickens, G. R., Nicolo, M. J., Hollis, C. J., Crampton, J. S., Zachos, J. C., & Sluijs, A. (2012). Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: The record at Mead Stream, New Zealand. The Journal of Geology, 120(5), 487–505.
Article
Google Scholar
Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G. J., & Brinkhuis, H. (2011). Southern ocean warming, sea level and hydrological change during the Paleocene–Eocene thermal maximum. Climate of the Past, 7(1), 47–61.
Article
Google Scholar
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G. J., Schouten, S., & Pancost, R. D. (2008). Eustatic variations during the Paleocene–Eocene greenhouse world. Paleoceanography, 23(4), 4216. https://doi.org/10.1029/2008PA001615
Article
Google Scholar
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G.-J., SinningheDamsté, J. S., Crouch, E. M., & Dickens, G. R. (2007). Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450, 1218–1222. https://doi.org/10.1038/nature06400
Article
Google Scholar
Sluijs, A., Van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., Levay, L. J., Reichart, G. J. & Slomp, C. P. (2014). Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Climate of the Past, 10(4), 1421–1439.
Article
Google Scholar
Smith, A. G., Smith, D. G., & Funnel, D. M. (1994). Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press.
Google Scholar
Speijer, R. P., & Morsi, A. M. M. (2002). Ostracode turnover and sea-level changes associated with the Paleocene–Eocene thermal maximum. Geology, 30(1), 23–26.
Article
Google Scholar
Stanley, S. M. (1972). Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology, 46, 165–212.
Google Scholar
Stassen, P., Thomas, E., & Speijer, R. P. (2012). Integrated stratigraphy of the Paleocene–Eocene thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment. Paleoceanography, 27(4), PA4210. https://doi.org/10.1029/2012PA002323
Article
Google Scholar
Storme, J. Y., Dupuis, C., Schnyder, J., Quesnel, F., Garel, S., Iakovleva, A. I., Iacumin, P., Di Matteo, A., Sebilo, M., & Yans, J. (2012). Cycles of humid-dry climate conditions around the P/E boundary: New stable isotope data from terrestrial organic matter in Vasterival section (NW France). Terra Nova, 24(2), 114–122.
Article
Google Scholar
Velde, B. (2014). Green clay minerals. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., Vol. 9, pp. 351–364). Elsevier.
Chapter
Google Scholar
Wang, G., Jia, Y., & Li, W. (2015). Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter. Scientific Reports, 5(1), 1–11. https://doi.org/10.1038/srep11043
Article
Google Scholar
Westerhold, T., Röhl, U., Donner, B., & Zachos, J. C. (2018). Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology, 33(6), 626–642.
Article
Google Scholar
Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L. J., & Zachos, J. C. (2007). On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 22(2), PA2201.
Article
Google Scholar
Willard, D. A., Donders, T. H., Reichgelt, T., Greenwood, D. R., Sangiorgi, F., Peterse, F., Nierop, K. G., Frieling, J., Schouten, S., & Sluijs, A. (2019). Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Global and Planetary Change, 178, 139–152.
Article
Google Scholar
Wright, J. D. (2001). Cenozoic climate—Oxygen isotope evidence. In J. Steele, S. Thorpe, & K. Turekian (Eds.), Encyclopedia of ocean sciences (pp. 415–426). Academic Press.
Chapter
Google Scholar
Zamagni, J., Mutti, M., Ballato, P., & Košir, A. (2012). The Paleocene–Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia). Bulletin, 124(7–8), 1071–1086.
Google Scholar