Skip to main content

Coral fauna across the Cretaceous–Paleogene boundary at Zagros and Sistan Suture zones and Yazd Block of Iran

Abstract

From the upper Maastrichtian (Tarbur Fm.) and Paleocene of Iran, 20 species of scleractinian corals belonging to 17 genera and 14 families, and one species of the octocoral Heliopora are newly recorded. Furthermore, coral species previously described from the upper Maastrichtian Tarbur Fm. and the Paleocene are revised and included in the evaluation, resulting in a total of 37 species from 28 genera belonging to 20 families (including 3 subfamilies) for the Iranian K/Pg-boundary time period. The majority of the taxa (21 out of 37 = 57%) crossed the K/Pg-boundary. The genera Acropora and Stylocoeniella are recorded from strata older than the Paleogene (upper Maastrichtian) for the first time; for Lobopsammia it is the first report from strata older than the Eocene (Selandian‒Thanetian). The vast majority of the coral taxa occurring in both the upper Maastrichtian (Tarbur Fm.) and the Paleocene of Iran have been reported from a variety of both reefal and non-reefal paleoenvironments. On the species level, a slight majority of the corals from the upper Maastrichtian (Tarbur Fm.) are endemic (14 out of 27 species = 52%). In contrast, the vast majority of the Paleocene Iranian corals are cosmopolitan to subcosmopolitan; only 4 taxa are endemic during the Paleocene. While the upper Maastrichtian coral fauna of Iran shows greatest affinities to contemporaneous assemblages of Europe and the Caribbean, the Paleocene coral fauna is most closely related to contemporaneous coral associations of central Asia, Europe, and North America.

Introduction

Coral-bearing sediments formed during the K/Pg-time period are exposed in various places across Iran. Most notably are the upper Maastrichtian sections of the Tarbur Formation in the Naghan-Semirom area (southwestern Iran) and the middle-upper Paleocene (Selandian‒Thanetian) sections of the Palang and other lithostratigraphically undefined formations that occur in eastern, central, and southwestern Iran. However, up to now, corals from strata of the K/Pg-boundary of Iran have been the focus of only a very small number of works. Kühn (1933) provided the first taxonomic descriptions of 12 coral species, 11 of which were collected from sediments of the Neyriz area and were originally referred to as “Cretaceous” (later considered to be Maastrichtian in age; see, e.g., Baron-Szabo, 2008; Kiessling & Baron-Szabo, 2004), one species was derived from the Paleocene of Tul-e-Nagarah (Shahr-e-Babak). Further works dealing with corals from Maastrichtian and Paleocene sediments have been published only fairly recently, either focusing on the taxonomy of corals (e.g., Khazaei, et al., 2009) or presenting coral material in studies on the microfacies (e.g., Afghah, 2022). Hence, the current paper adds considerably to our knowledge of the Iranian coral fauna. The aim of this study is to (i) describe newly collected upper Maastrichtian (Tarbur Fm.) and Paleocene corals from Iran; (ii) reevaluate and revise previously described corals from the K/Pg-boundary of Iran; and (iii) provide both their paleoenvironmental occurrences and paleogeographic distributional patterns.

Study area

The coral material was derived from upper Maastrichtian and Paleocene sediments collected in various parts of Iran, including central (Yazd), eastern (Zahedan), southern-southwestern (Shahr-e-Babak, Neyriz, Shiraz), and western (Naghan, Semirom) areas (Figs. 1, 2).

Fig. 1
figure 1

Map showing general location of study area

Fig. 2
figure 2

Tentative locations of the upper Maastrichtian and Paleocene sections from which the newly described material was collected (1–5, arrows), plotted on the tectonic map of Iran (modified from Zanchi, et al., 2009). AA = Anatolian–Armenian Block, AMC = Anarak Metamorphic Complex, KDF = Kopeh Dagh Foredeep, MZT = Main Zagros Trust.); 1: Naghan section; 2: Mandegan section; 3: Qorban section; 4: Kuh-e-Chatorsh section; 5: Kuh-e-Patorgi and Bandan sections. For further information on the Shahr-e-Babak and Neyriz localities, see Kühn (1933), for details regarding the Semirom section, see Khazaei, et al. (2009)

Upper Maastrichtian localities (Tarbur Formation)

Naghan section

The studied area in the folded Zagros belt is located approximately 50 km southwest of Naghan, near Gandomkar village (Figs. 1, 2, 3, Table 1). At this locality, the Tarbur Formation unconformably rests on the Gurpi Formation and is overlain by the Paleocene Sachun Formation. Lithologically, the Gurpi Formation consists of dark-colored shales and grey calcareous shales with planktonic foraminifera. The Sachun Formation consists of gypsum, red shales, anhydrite and rare layers of carbonates. The thickness of the Tarbur Formation at the Naghan section is about 274 m and consists of medium to thick-bedded grey limestones, shales and marls. Some beds contain abundant large-sized benthic foraminifera (e.g., Loftusia) and dasycladalean algae (e.g., Pseudocymopolia) that are well visible on the weathered rock surfaces. The Naghan section represents the type locality for several larger benthic foraminifera (Schlagintweit & Rashidi, 2016, 2017a, b, c). Corals occur scattered throughout the whole section (Fig. 3).

Fig. 3
figure 3

Vertical distribution of larger benthic foraminifera, corals and dasycladalean green algae in the Tarbur Formation of the Naghan section, SW Iran

Table 1 Localities from which the Iranian corals included in the current study were collected, their geologic settings and lithostratigraphy

Mandegan and Rod-Abad sections

The study area is located in the High Zagros Belt about 65 km south of the town of Semirom (Figs. 1, 2, Table 1). The Mandegan section is located about 10 km south of the village of Mandegan (for further details of the location see Schlagintweit, et al., 2016a, b, c). At this section, the Tarbur Formation has a thickness of 272 m and conformably overlies the Gurpi Formation. The top of the section is unconformably overlain by the conglomerates of the Pliocene Bakhtiari Formation. The Rod-Abad section is located ~ 6.5 km NE of Mandegan village (coordinates at the base: N 31°8′32.46″ and E 51°23′51.30″). Here, only the lower part of the Tarbur Formation (thickness ~ 65 m) above the Gurpi Formation is exposed. The succession records short sea-level transgressive–regressive pulses with intercalation of four marly levels rich in rudists in living-position between massive limestone with a fairly rich rotaloidean assemblage, Loftusia, and Omphalocyclus (Consorti & Rashidi, 2018, for details).

Semirom section

The study area is located in the High Zagros Belt. The section of the Tarbur Formation is exposed about 5 km southwest of the town of Semirom (Khazaei, et al., 2009) and is here referred to as Semirom section (Fig. 1; Tables 1, 2; Appendix Table 7). At this section, the Tarbur Formation has a thickness of around 400 m (for further details see Khazaei, et al., 2009).

Table 2 List of newly and previously (Neyriz and Shahr-e-Babak: Kühn, 1933; Semirom: Khazaei, et al,. 2009) reported Iranian corals species and their Iranian occurrences during the upper Maastrichtian (Tarbur Fm.) and Paleocene (see Appendix Table 10 for exact stratigraphic levels of new material). For taxonomic evaluation of previously reported taxa see Appendix Table 7

Neyriz section

From this area (Fig. 1), Kühn (1933, p. 150 and 177‒184) described material assigned to 11 coral species (Table 2; Appendix Table 7) which had been given to him by Dr. Shaw of the Anglo-Persian-Oil-Company (APOC). Kühn (1933), however, provided no information on the lithology of the collecting site other than “rudist limestone” (“Rudistenkalk”). Attempts to obtain further information on the geology of this outcrop by one of us (RBS) were unsuccessful.

Paleocene localities

Kuh-e-Patorgi area (Bandan and Patorgi sections)

The Patorgi section is located ~ 10 km SE of Bandan village, about 215 km from Zahedan, the central province city, and about 10 km from the Afghanistan–Iran border (Figs. 1, 4). The Bandan section is located ~ 10.3 km west-northwest of the Patorgi section, both accessible from the road Nehbandan to Zahedan. The geological setting is the same for both sections. Based on Bandan map 1:100,000 (Eftekhar Nezhad, et al., 1990), the oldest unit in these sections is represented by the Sefidabeh Formation that consists of volcanoclastic deposits. It is conformably overlain by the Paleogene Palang Formation, subdivided into two limestone members separated by coarse-grained clastics. The Paleocene sediments are unconformably overlain by Eocene rocks. Geotectonically, the study area is located between the Lut Block in the west and Helmand (or Afghan) Block to the east (Fig. 2). It is known as Flysch or Sistan Suture Zone and mainly includes ophiolitic mélanges and Upper Cretaceous to Paleogene sediments (Tirrul, et al., 1983). Paleogeographically it is part of the former Northern Neotethyan margin (Fig. 5). The microfacies is a packstone with rotaliids, e.g., Lockhartia aff. retiata Sander, small miliolids, and a diverse assemblage of dasycladalean algae. Directly below, specimens of Rotorbinella Smout [R. detrecta Hottinger, R. hensoni (Smout)] have been observed indicating shallow benthic zones (SBZ) 2–3 (Hottinger, 2014; Serra-Kiel, et al., 1998). Lockhartia retiata Sanders is known from SBZ 3–4 according to Hottinger (2014). For South Tibet, a biozonation with Lockhartiinae was established by Kahsnitz, et al. (2016) with L. retiata restricted to the Lockhartia biozones 1 and 2 (= SBZ 2 and lower part of SBZ 3). The upper part of the Bandan section can be assigned to the Thanetian based on the presence of Ranikothalia solimani Butterlin (Fig. 4). The coordinates of the Patorgi section base are 31°22′59.10″N, and 60°49′36.58″E, those from the Bandan section base are 31°23′59.65″N, 60°43′11.26″E.

Fig. 4
figure 4

Vertical distribution of larger benthic foraminifera, corals and principal algal groups in the Bandan section, eastern Iran

Fig. 5
figure 5

Paleogeographic position of the three study areas (Ypresian map modified from Barrier & Vrielynk, 2008). a Kuh-e-Chatorsh section, Central Iran; b Zahedan-Bandan sections, East Iran; c Qorban section, Zagros Zone

Kuh-e-Chatorsh section

The Mount Chatorsh section is located about 55 km southeast of Mehriz, near Yazd city (Figs. 1, 6, Table 1). In previous works this locality has been named Kuh-é-Tchahtorch (Deloffre, et al., 1977), Tchah-Torch (Khosrow-Tehrani, 1987), Kamar-e-Chahtorsh (Nabavi, 1972), and Kuh-e-Chah Torsh (Majidifard & Vaziri, 2000). Geotectonically, the study site is part of the Central Iranian Microcontinent, namely the Yazd Block (e.g., Takin, 1972) (Figs. 2, 5). Paleogeographically it is part of the former Northern Neotethyan margin (Fig. 5). It is followed with erosional contact by clastic deposits, and finally upper Maastrichtian sandy limestones containing bryozoans, orbitoidid and siderolitid foraminifera. Above the last sample with orbitoidids assigned to the upper Maastrichtian (AH 73), an interval of sandy marls (0.8 m to 1.0 m) follows lacking any sample data (Fig. 6). Most likely it represents an emersion horizon at the K-Pg boundary interval. The lowermost sample of the following mixed carbonatic–siliciclastic marine bed (AH 74) documents a new transgression, containing textulariids and rotaliids, among which is Rotorbinella detrecta Hottinger. This facies grades into nodular carbonates containing abundant rather thick-walled miliolids (Ankarella, Haymanella), the agglutinating taxon Kolchidina paleocenica (Cushman), and bryozoans, assigned to the Danian (e.g., Sirel, 2012). Upwards it is followed by alluvial fan conglomerates, non-fossiliferous reddish sandstones, mudstones exhibiting fine cracks and black pebble formation (mud-flat deposits), subtidal grain-packstones with miliolids and algae (subtidal lagoon), and intercalated lensoidal dolomite bodies. The repetitive appearance of (sandy) mudstones and lagoonal grain/packstones indicates cyclic sedimentation due to oscillating sea-level (T-R cycles). In the lower part of the cycles a rhyolitic sill is intercalated that is around 35–40 m in thickness. This unit is followed by a package of limestones that correspond to the subtidal beds of the T-R cycles when considering the microfacies. Going upwards, these are succeeded by thick-bedded to massive limestones reaching up to the summit of Mount Chah Torsh. The diversification of benthonic foraminifera and calcareous algae starts in the middle to upper part increasing markedly in the last third of this unit. The typical microfacies is a packstone containing abundant miliolids, associated with dasycladalean and halimedacean algae. The larger benthic foraminifer Sistanites iranicus Rahaghi is among the most common taxa in the upper part of the section. Its first occurrence is (in accordance with literature data from other regions, e.g., Pignatti, et al., 2008; Sirel, 1998, 2012) tentatively used as the separation of SBZ 1 and SBZ 2 sensu Serra-Kiel, et al. (1998). There is no biostratigraphic evidence that the Paleogene carbonates exposed at Mount Chah Torsh reach into the Thanetian. The coordinates of the section base are 31°14′37.28″N, and 54°33′43.27″E.

Fig. 6
figure 6

Simplified lithostratigraphic column of the Kuh-e-Chatorsh section with position of samples, distribution of benthic foraminifera, corals and calcareous algae (modified from Schlagintweit, et al., 2019a)

Qorban section

The section name refers to the Qorban (or Ghorban) Member of the Paleocene–Lower Eocene Sachun Formation (e.g., Bavi, et al., 2016; James & Wynd, 1965). It is located about 70 km southeast of the city of Shiraz (Figs. 1, 2) and consists of thick-bedded gray limestone, yellowish sandy, dolomitic limestone and dolomite (Fig. 7). The Qorban member is a carbonatic unit within the Sachun Formation widespread in the area south and southeast of Shiraz. The thickness of the studied succession is about 210 m. The study site is located within the Mozaffari anticline structure, located 4 km near the road Shiraz-Jahrom. Paleogeographically it belongs to the Zagros Zone, SW Iran, part of the former southern Neotethyan margin (Fig. 5). The Ghorban (or Qorban) Member contains a diverse association of dasycladalean algae and benthic foraminifera, among which are many larger benthic foraminifera of biostratigraphic importance. The assemblage is discussed in detail in Benedetti, et al. (2021) and Schlagintweit, et al. (2020), allowing an attribution to SBZ 3–4 (late Selandian‒Thanetian) (Hottinger, 2009, 2014; Pignatti, et al., 2008; Serra-Kiel, et al., 1998, 2016; Sirel, 2012). The coordinates of the section base are 29°11′40.58″N, 52°52′36.40″E.

Fig. 7
figure 7

Stratigraphy and vertical distribution of larger benthic foraminifera and corals at the Qorban section, southwestern Iran (modified after Benedetti et al., 2021)

Shahr-e-Babak area (Tul-e-Nagarah)

From this area (Fig. 1), Kühn (1933, p. 157 and 184) described material assigned to the coral Astrocoenia rariseptata [here grouped with Stylocoenia maxima Duncan] (see text below and Appendix Table 7) which had been given to him by Dr. Gray of the Anglo-Persian-Oil-Company (APOC). Kühn (1933), however, provided no information on the lithology of the collecting site other than “dark brown and crimson-purplish limestone”. Attempts to obtain further information on the geology of the Tul-e-Nagarah area by one of us (RBS) were unsuccessful.

Material, methods, abbreviations

In addition to previously described material from the Shahr-e-Babak (Paleocene) (Kühn, 1933), as well as the Neyriz and Semirom areas (upper Maastrichtian; Tarbur Fm.) (Khazaei, et al., 2009; Kühn, 1933), the current study includes 166 thin sections which were derived from upper Maastrichtian sediments of the Tarbur Formation at Naghan and Mandegan, and from the upper Paleocene (Selandian‒Thanetian) strata at Bandan, Kuh-e-Chatorsh, Kuh-e-Patorgi, and Qorban areas (Tables 1, 2, Appendix Table 10).

The material discussed in the current work includes specimens from the Department of Geology, Yazd University (Rashidi collection) (for prefix of sample numbers see Table 1); the Naturhistorisches Museum Wien, Österreich (Natural History Museum Vienna, Austria) (NHMW); the Department of Geology, University of Graz, Austria (GPU); and The Natural History Museum London, UK (NHMUK).

Abbreviations * = first description of taxon to which the assignment of specimen refers, v = material was studied by one of us (RBS), c–c = distance between corallite centers, d = corallite diameter, db = diameter of branch s = number of septa, s/mm: septal density

Note: citation in italics in synonymy list = taxon only listed in the work concerned (neither illustration nor description provided).

The Iranian coral fauna

General considerations

A total of 37 species from 28 genera belonging to 20 families (including 3 subfamilies) are determined from the upper Maastrichtian and Paleocene of Iran are arranged in an updated taxonomic framework (Tables 1, 2, 4; Appendix Tables 6, 7);

  • the majority of the Iranian species (21 out of 37 species = 57%) crossed the K/Pg-boundary (Table 3);

  • the majority of the coral taxa belong to colonial forms (23 out 37 = 62%) (Table 1), including 13 species (= 35%) having cerioid–plocoid corallite integrations, followed by highly integrated (meandroid, thamnasterioid) species (7 out of 37 species = 19%) and branching types (3 out of 37 species = 8%);

  • The vast majority of the coral taxa occurring in both the upper Maastrichtian (Tarbur Fm.) and the Paleocene of Iran has been reported from a variety of both reefal and non-reefal paleoenvironments (Appendix Table 8). In the Tarbur Formation, corals occur in both outer and inner ramp settings associated with rudists, a diverse assemblage of larger benthic foraminifera such as Loftusia or Omphalocyclus and dasycladalean green algae (Fig. 3). Noteworthy is the absence of coralline red algae. In the Paleocene strata of Iran, corals preferentially occurred in external platform facies typically associated with larger benthic foraminifera including rotaliid foraminifera, dasycladales, halimedaceans and also red algae (Figs. 4, 6, 7).

Table 3 Stratigraphic distribution of the Iranian coral species

Corals of the upper Maastrichtian (Tarbur Fm.)

  • 27 species from 20 genera are reported from the upper Maastrichtian (Tarbur Fm.) of Iran (Table 2, Appendix Table 6);

  • on the genus level, Actinacis, Cunnolites, Goniopora. Palaeopsammia, Paracycloseris, and Synastrea are cosmopolitan during the Maastrichtian (6 out of 20 genera = 30%); the genera Acropora, Strotogyra, Stylocoeniella, and Stylocoenia reported from Iran are most restricted/endemic (Table 4, Appendix Table 6);

  • on the species level, however, a slight majority of species is endemic during the upper Maastrichtian (15 out of 27 species = 55.6%) (Appendix Table 6);

  • the vast majority of the coral taxa occurring in the Tarbur Fm. has been reported from a variety of both reefal and non-reefal paleoenvironments. Only the solitary species Cunnolites angiostoma and Paracycloseris nariensis, and the colonial form Stylocoeniella hoernesi have been known solely from non-reefal environments (Appendix Table 8);

  • during the Maastrichtian, the species Bathycyathus lloydi, Cunnolites cancellata, Cunnolites scutellum, Goniopora imperatoris, Palaeopsammia zitteli, Paracycloseris nariensis, and Rennensismilia inflexa have the widest geographic distribution (Appendix Table 6);

  • first-time report of Acropora bancellsae, Actinacis barretti, Bathycyathus corneti, Strotogyra copoyensis, Stylocoenia maxima, and Stylocoeniella hoernesi from strata older than Paleogene (Appendix Table 6);

  • the Iranian coral fauna of the upper Maastrichtian (Tarbur Fm.) shows greatest affinities to contemporaneous faunas of Europe and the Caribbean (Appendix Table 6, Fig. 8).

Table 4 Distribution in the Maastrichtian of the upper Maastrichtian (Tarbur Fm.) coral genera found in Iran
Fig. 8
figure 8

Paleogeographic distribution of the Iranian species during the Maastrichtian. X = Iranian corals (Tarbur Fm., upper Maastrichtian; Kühn, 1933; Khazaei, et al., 2009; and current paper); 1 = Madagascar; 2 = India; 3 = Saudi Arabia; 4 = Turkmenistan; 5 = Bulgaria; 6 = Croatia; 7 = Hungary; 8 = eastern Serbia; 9 = Libya; 10 = Tunisia; 11 = The Netherlands; 12–13 = USA; 14 = Mexico; 15 = Jamaica; Paleocoordinates: X = 10°42′N, 45°18′E (Neyriz), 13°12′N, 43°12′E (Semirom); 1 = 29ºS, 36ºE; 2 = 33º30′S, 58º12′E; 3 = 8ºN, 38ºE; 4 = 33°N, 49°E; 5 = 29°42′N, 20°36′E; 6 = 28°N, 18°E; 7 = 32°N, 19°E; 8 = 31°N, 20°E and 32°24′N, 18°30′E; 9 = 20°N, 12°12′E; 10 = 24°N, 7°24′E; 11 = 43°24′N, 4°30E; 12 = 52°N, 75°W; 13 = 36°N, 76°W; 14 = 22°N, 75°W; 15 = 18°48′N, 72°30′W. Paleomap modified from Paleomap project Scotese [2014] at www.scotese.com. Paleocoordinates of the coral localities of Hungary and Tunisia estimated based on information provided by Paleobiology Database (paleobiodb.org); all others retrieved from Paleobiology Database (paleobiodb.org)

Corals of the Paleocene

  • 17 species from 16 genera are reported from the Paleocene of Iran (Table 2, Appendix Table 6);

  • on the genus level, Actinacis, Goniopora. Oculina, Stylocoenia, Trochoseris, and Turbinolia are cosmopolitan during the Paleocene (6 out of 16 genera = 37.5%); the genera Lobopsammia, Strotogyra, and Stylocoeniella reported from Iran are most restricted/endemic (Table 5, Appendix Table 6);

  • first report of Lobopsammia from strata older than the Eocene (Selandian-Thanetian);

  • a significant majority of the coral taxa occurring in the Paleocene of Iran has been reported from a variety of both reefal and non-reefal paleoenvironments. Only the species Bathycyathus lloydi (may be solitary or branch of phaceloid colony), the solitary form Turbinolia dickersoni, and the colonial forms Heliopora incrustans and Stylocoeniella expansa have been known solely from non-reefal environments (Appendix Table 8);

  • on the species level, the vast majority of corals is cosmopolitan to subcosmopolitan; only 4 taxa are endemic during the Paleocene (Acropora bancellsae, Lobopsammia cariosa, Strotogyra copoyensis, and Stylocoeniella expansa) (Appendix Table 6);

  • during the Paleocene, the species Actinacis barretti, Bathycyathus lloydi, Faksephyllia faxoensis, and Trochoseris aperta have the widest geographic distribution (Appendix Table 6);

  • the Iranian coral fauna of the Paleocene shows greatest affinities to contemporaneous faunas of the northern hemisphere, including central Asia, Europe, and North America (Fig. 9).

Table 5 Distribution in the Paleocene of the Paleocene coral genera found in Iran
Fig. 9
figure 9

Paleogeographic distribution of the Iranian species during the Paleocene. X = Iranian corals (Kühn, 1933; and current paper); 1 = Pakistan; 2 = Somalia; 3 = Azerbaijan; 4 = Egypt; 5 = Ukraine; 6 = Turkmenistan; 7 = Kazakhstan; 8 = Turkey; 9 = Spain; 10 = Italy; 11 = Belgium; 12 = The Netherlands; 13 = Denmark; 14 = Austria; 15 = Slovakia; 16 = Slovenia; 17 = Greenland; 18–21 = USA; 22 = Mexico; 23 = Puerto Rico; Paleocoordinates: X = 23°N, 53°E; 1 = 6º42′S, 57º42′E; 2 = 2ºS, 36º54′E; 3 = 11º54′N, 49º36′E; 4 = 13°N, 24°E; 5 = 20º18′N, 46º12′E; 6 = 34°6′N, 49°30′E; 7 = 39°12′N, 45°18′E; 8 = 28°12′N, 31°24′E; 9 = 36°N, 2°24′W and 37°18′N, 3°6′W; 10 = 32°24′N, 12°18′E; 11 = 43°48′N, 2°18′E; 12 = 44°12′N, 3°54′E; 13 = 48°36′N, 9°30′E; 14 = 36°N, 14°E; 15 = 43°18′N, 14°42′E; 16 = 34°48′N, 13°18′E and 36°N, 12°54′E; 17 = 62°N, 20°48 W; 18 = 43°18′N, 100°48 W; 19 = 38°30′N, 97°24 W; 20 = 34°N, 70°48′W; 21 =  = 38°6′N, 68°W; 22 = 32°54′N, 93°36′W; 23 = 7°N, 62°12′W. Paleomap modified from Paleomap project Scotese [2014] at www.scotese.com. Paleocoordinates of the coral localities of Austria estimated based on information provided by Paleobiology Database (paleobiodb.org); all others retrieved from Paleobiology Database (paleobiodb.org)

Systematic paleontology

The taxonomic framework followed here is based on a synthesis of the modern studies mentioned and discussed in Baron-Szabo (2021c) with the classical and recent works by Alloiteau (1952, 1957), Baron-Szabo (2021b, c), Baron-Szabo and Cairns (2019), Cairns (1997, 2001), de Fromentel (1861), Duncan (1884), Milne Edwards and Haime (1857), Morycowa and Roniewicz (1995), Oppenheim (1930), Vaughan and Wells (1943), Wells (1956), and additional references as listed in Appendix Table 9. For information on excluded taxonomic models see Baron-Szabo (2021b, p. 29‒30 and 166).

Family Astrocoeniidae Tomes, 1883

Remarks. In general, authors have credited the authorship of the family Astrocoeniidae to Koby (1889). However, the fact has been largely overlooked that Tomes (1883, p. 557; “Subfamily Astrocoeninae”) already used the genus Astrocoenia to create the family-level taxon Astrocoeniinae, giving him priority of authorship of each family-level taxon based on this type genus.

Genus Stylocoenia Milne Edwards & Haime, 1849b

Type species. Astrea emarciata Lamarck, 1816, Eocene of France (designation by Milne Edwards & Haime, 1849b).

Diagnosis. Colonial, ramose, massive or incrusting, cerioid. Columniform projections arise at junctions of adjacent corallites. Budding extracalicular. Costosepta compact, thin, laminar, acute dentations laterally. Columella styliform. Endothecal dissepiments tabular. Wall septothecal.

Stylocoenia maxima Duncan, 1880

Fig. 10A, C, E

  1. *1880

    Stylocoenia maxima: Duncan, p. 30‒32, Pl. 12, Figs. 1–6.

  2. ?1880

    Astrocoenia cellulata: Duncan, p. 42, Pl. 14, Fig. 7.

  3. 1925

    Stylocoenia maxima Duncan, 1880: Felix, pars 28, p. 248.

  4. v1933

    Astrocoenia rariseptata nov. spec.: Kühn, p. 184‒186, Pl. 17, Fig. 10.

  5. 2006

    Stylocoenia maxima Duncan, 1880: Baron-Szabo, p. 14, Text—Fig. 6.

Fig. 10
figure 10

A Stylocoenia maxima Duncan, 1880; NHMW 1933/0008/0006 (holotype of Astrocoenia rariseptata Kühn, 1933), calicular view of colony, upper surface, showing abraded intercorallite pillars (arrows) (image courtesy of Alice Schumacher, Natural History Museum Vienna, Austria); upper Maastrichtian (Tarbur Fm.), Neyriz area, southern Iran. B Stylocoeniella expansa (d’Achiardi, 1875); Pb29 (10), calicular view of colony, thin section, showing abraded intercorallite pillars as seen in, e.g., Stylocoeniella armata, USNM 80263 (arrows); Danian or Selandian, Kuh-e-Patorgi, Sistan Suture Zone, eastern Iran. C Stylocoenia maxima Duncan, 1880; 2NG202 (4), calicular view of colony, thin section; upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. D Stylocoeniella hoernesi (Oppenheim, 1901); 2NG147 (42), calicular view of colony, thin section, showing abraded intercorallite pillars as seen in, e.g., Stylocoeniella armata, USNM 4922 and 80263 (arrows), upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. E Stylocoenia maxima Duncan, 1880; Qs98 (16), calicular view of colony, slightly oblique, thin section; Selandian, Qorban, Zagros Zone, southwestern Iran. F Acropora bancellsae Álvarez-Pérez, 1997; 2NG127 (18), calicular view of colony, thin section, showing main corallite tube (arrow on right) and secondary corallite (arrow on left); upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. G Acropora bancellsae Álvarez-Pérez, 1997; 2NG127 (19), calicular and oblique longitudinal views of colony, thin section, showing main corallite tube (arrow on upper right) and secondary corallite (arrow on lower left); upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. H Acropora bancellsae Álvarez-Pérez, 1997; BN46‒b (5), calicular and longitudinal views of colony, thin section, showing secondary corallites (arrows) standing off of main corallite tube; Selandian‒Thanetian, Bandan, Sistan Suture Zone, eastern Iran

Dimensions. d: 2.4‒4.5 mm, in areas of intense budding less than 2 mm; c–c: 2.5‒5 mm; s: 10 + s.

Description. Cerioid ?subramose corallum; corallites irregularly polygonal to rounded in outline; costosepta generally thin, up to 10 reach corallite center; styliform columella small.

Type locality of species. Selandian‒Thanetian of Pakistan (Jhirk, Sind).

Distribution. Upper Maastrichtian (Zagros Zone, Tarbur Fm., southwestern Iran; this paper), Selandian (Zagros Zone, southwestern Iran; this paper), and Paleocene (Shahr-e-Babak, south-central Iran) of Iran, Selandian of Pakistan (Jhirk, Sind).

New material. 2NG202 (3, 4, 13b) (Zagros Zone, Tarbur Fm., southwestern Iran); Qs98 (16) (Zagros Zone, southwestern Iran).

Family Pocilloporidae Gray, 1842

Genus Stylocoeniella Yabe & Sugiyama, 1935

Type species. Stylocoenia hanzawai Yabe & Sugiyama, 1933, Holocene, off Japan.

Diagnosis. Colonial, ramose, massive or incrusting, cerioid to subplocoid. Budding intra- and extracalicular. Costosepta compact, nonconfluent to subconfluent, with acute dentations laterally. Costae generally short, sometimes absent. Pali irregularly present. Auriculae regularly or irregularly (in type species) present. Columella styliform to short lamellar, or made of irregular trabecular portions. Endothecal and exothecal dissepiments subtabulate and vesicular. Wall septoparathecal, with occasional pores. Synapticulae ?present. Intercorallite pillars present which can be tall (up to around 1 mm tall in type species), or reduced to short knobs that appear as thickened portions at the peripheral edge of septa. Intercorallite pillars can be absent in large parts of colony.

Remarks. Study of original and topotypic material of the type species by one of the authors (RBS) revealed that the genus Stylocoeniella has auriculae, indicating some level of correspondence to the stylinids. But based on the presence of (1) intercorallite pillars; (2) septa with acute dentations laterally; and (3) septoparatheca with occasional pores, the genus Stylocoeniella is kept with the Pocilloporidae.

Stylocoeniella expansa (d’Achiardi, 1875 )

Fig. 10B

  1. v*1875

    Astrocoenia expansa, m: d’Achiardi, p. 183‒184, Pl. 15, Fig. 3a‒c.

  2. 1901

    Astrocoenia expansa d’Achiardi: Oppenheim, p. 224, Pl. 14 (4), Figs. 17‒b.

  3. 1925

    Astrocoenia expansa d’Achiardi, 1875: Felix, 240‒241 [cum synonymis].

Dimensions. d (monocentric): 0.7‒1 mm, in areas of intense budding 0.4‒0.7 mm; c–c: up to around 1 mm; s: 12‒16 (+ s).

Description. Ramose colony; corallites in cerioid to cerio-plocoid integration; costosepta developed in 2 complete cycles in 6, 8, or unclear systems; one or more septa of S1 reach corallite center, sometimes fusing with the small styliform columella.

Type locality of species. Eocene of Italy.

Distribution. Danian or Selandian of Iran (Zagros Zone, southwestern), Eocene of Italy, Middle Eocene of Bosnia-Herzegovina.

New material. Pb29 (10) (Sistan Suture Zone, eastern Iran); Qs93 (25) (Zagros Zone, southwestern Iran);

Stylocoeniella hoernesi (Oppenheim, 1901 )

Fig. 10D

  1. v*1901

    Astrocoenia Hoernesi n. sp.: Oppenheim, p. 222‒223, Pl. 17 (7), Fig. 3‒3a.

  2. v2009

    Actinacis parvistella Oppenheim, 1930: Khazaei, et al., p. 32, Pl. 2, Fig. 1‒2 [chronotypic material from this area studied].

  3. v2009

    Actinastrea ramosa (Sowerby, 1832): Khazaei, et al., p. 32, Pl. 2, Figs. 3‒4 [chronotypic material from this area studied].

Dimensions. d: 1‒1.8 mm, up to 2 mm in some places, in areas of intense budding often 0.5‒0.7 mm; c–c: 1‒2 mm; s: 12‒24, often 16‒20.

Description. Cerioid to cerio-plocoid colony; costosepta thin and rather straight; one or more of S1 fuse with the columella.

Type locality of species. Middle Eocene of Croatia (Dubravica).

Distribution. Upper Maastrichtian of Iran (Zagros Zone, Tarbur Fm., southwestern Iran; new material this paper), Middle Eocene of Croatia.

New material. 2NG147 (28, 29, 36, 42) (Zagros Zone, Tarbur Fm., southwestern Iran).

Remarks. In the lectotype of Oppenheim’s species hoernesi (UGP 1349) most corallites are in budding stage, having corallite diameters of 2 mm or even larger. However, monocentric corallites often range between 1.2 and 1.5 mm, in areas of intense budding they are around 0.5 mm.

In having (1) cerioid to cerio-plocoid corallites; (2) intra- and extracalicular budding; (3) irregularly occurring pali; (4) a styliform or short lamellar columella; (5) septoparathecal walls with occasional pores; and (6) intercorallite pillars preserved in some places, the material from the upper Maastrichtian of Iran (Tarbur Fm.) assigned to Actinacis parvistella Oppenheim and Actinastrea ramosa (Sowerby) by Khazaei et al. (2009) corresponds to Stylocoeniella.

Family Acroporidae Verrill, 1902

Genus Acropora Oken, 1815

Type species. Millepora muricata Linnaeus, 1758, Holocene, Moluccas, designated by Verrill (1902).

Diagnosis. Colonial, ramose, rarely massive or incrusting. Branches with an axial or leading corallite larger than the more numerous radial corallites budded from it. Corallites united by light, reticulate, spinose or pseudocostate coenosteum. Columella and dissepiments absent. Wall synapticulothecal, porous.

Acropora bancellsae Álvarez-Pérez, 1997

Fig. 10F–H.

  1. *1997

    Acropora bancellsae n. sp.: Álvarez-Pérez, p. 299–300, Pl. 2, Figs. 1–2.

Dimensions. db: 1.4‒3 mm; d (axial corallite): 0.7‒1.2 mm; d (secondary corallite): 0.3‒0.6 mm; s (axial corallite): 12 (+ s); s (secondary corallite): 6 (+ s).

Description. Branching colony; corallites irregularly circular in outline; secondary corallites usually have 6‒10 septa.

Type locality of species. Middle Eocene (Bartonian) of Spain (La Tossa Fm.).

Distribution. Upper Maastrichtian and Selandian‒Thanetian of Iran (this paper; Zagros Zone, Tarbur Fm., southwestern Iran; Sistan Suture Zone, eastern Iran), Middle Eocene (Bartonian) of Spain (La Tossa Fm.).

New material. BN40‒c (19, 24, 25), BN41‒a (1), BN41‒a (1‒6, 11), BN41‒c; BN41‒c (11), BN46‒a (1, 2, 6), BN46‒b (5), BN53 (21), BN56‒b (18), BN59‒N1 (8, 15), BN63 (6, 8‒10), BN64 (2, 16), P3171291–98; Pb62 (7), PL‒2 (32–34, 37–39) (all from Sistan Suture Zone, eastern Iran); 2NG122 (30–31), 2NG127 (13, 16, 18–21), 2NG127‒2 (1, 12), 2NG127‒3 (1, 3, 5–6, 8–9), 2NG127‒4 (1, 3–8, 15–16), 2NG127‒5 (2–5, 8), 2NG147 (30), 2NG202 (2), 2NG202 (10), NG113 (32) (all from Tarbur Formation, southwestern Iran, Zagros Zone).

Remarks. With regard to both corallite arrangements and thecal developments, the Iranian material shows affinities to species such as A. rongelapensis Richards & Wallace, 2004, and forms of the humilis-group (sensu Wallace, et al., 2020).

Family Meandrinidae Gray, 1847

Genus Pachygyra Milne Edwards & Haime, 1848a

Type species. Lobophyllia labyrinthica Michelin, 1847, Coniacian–Santonian of France (Aude) (see Milne Edwards & Haime, 1848a).

Diagnosis. Colonial, massive, subflabellate–meandroid. Budding intracalicinal, resulting in sinuous, non‒ramified, calicinal series, which are separated by perithecal walls and ambulacra. Calicinal series are always projecting, their edges remain free. Calicinal centers indistinct. Costosepta compact, finely granulated laterally. Septal anastomosis present. Columella lamellar, generally continuous. Wall septothecal. Perithecal and endothecal dissepiments thin, subtabulate.

Remarks. Genus Pachygyra was recently reevaluated and revised (Baron-Szabo, 2014, p. 43–44, Pl. 44, Figs. 1–5; Pl. 45, Figs. 1–3; Pl. 46, Fig. 2; Pl. 47, Fig. 2; Text–Fig. 9).

Pachygyra princeps Reuss, 1854

Fig. 11, 1

  1. v*1854

    Pachygyra princeps: Reuss, p. 93, Pl. 3, Figs. 1‒3.

  2. 1857

    Pachygyra princeps: Milne Edwards & Haime, vol. 2, p. 212.

  3. 1858–61

    Pachygyra princeps: de Fromentel, p. 157.

  4. 1880

    Diploria flexuosissima, D‘Ach.: Duncan, p. 39, Pl. 6, Figs. 11‒12.

  5. v1903

    Pachygyra princeps Reuss: Felix, p. 310.

  6. 1930

    Pachygyra pusulifera n. sp.: Oppenheim, p. 450, Pl. 33, Figs. 8.

  7. 1937

    Pachygyra princeps Reuss: Bataller, p. 92, Fig. on p. 92.

  8. v1982

    Pachygyra princeps Reuss, 1854: Beauvais, vol. 1, p. 188, Pl. 16, Fig. 1, Pl. 17, Fig. 1.

  9. 1982

    Pachygyra pusulifera Oppenheim, 1930: Beauvais, vol. 1, p. 190.

  10. v1998

    Orbignygyra sp.: Turnšek & Drobne, p. 136, Pl. 6, Figs. 2‒3.

  11. v2006

    Pachygyra princeps Reuss, 1854: Baron-Szabo, p. 76, Pl. 15, Fig. 2a–b [cum synonymis].

  12. v2014

    Pachygyra princeps Reuss, 1854: Baron-Szabo, p. 43–44, Pl. 44, Fig. 3, Pl. 45, Figs. 1–3, Pl. 46, Fig. 1.

  13. v2019

    Pachygyra princeps Reuss, 1854: Löser, et al, p. 99–100.

Fig. 11
figure 11

A Pachygyra princeps Reuss, 1854; Qs33 (32), calicular view of colony, thin section; Thanetian, Qorban, Zagros Zone, southwestern Iran. B Trochoseris aperta Duncan, 1864; Qs33 (33), calicular view of corallum, thin section; Thanetian, Qorban, Zagros Zone, southwestern Iran. C Strotogyra copoyensis (Frost & Langenheim, 1974); 2NG202 (14‒15), calicular view of colony, thin section; upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. D Oculina conferta Milne Edwards & Haime, 1850; BN59‒N1 (4), calicular view of colony, thin section; Thanetian, Bandan, Sistan Suture Zone, eastern Iran. E Placosmilia cf. fenestrata (Felix, 1900); 2NG202 (16), calicular view of colony, showing rejuvenation, thin section (see Fig. G for comparison); upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. F Oculina conferta Milne Edwards & Haime, 1850; BN59‒N1 (14), calicular and longitudinal views of colony, thin section; Thanetian, Bandan, Sistan Suture Zone, eastern Iran. G Placosmilia psecadiophora (Felix, 1903) (= Placosmilia sinuosa [Reuss, 1854]); NHMW 1864/0040/1241, syntype, calicular view of colony, showing rejuvenation, upper surface; upper Santonian of Austria (Gosau Group at Neffgraben). H Lobopsammia cariosa (Goldfuss, 1826); Qs93 (41), oblique calicular view of colony, thin section; ?Selandian, Qorban, Zagros Zone, southwestern Iran

Dimensions. d: 3.5‒5 mm; s/mm: 5‒8/2.

Description. Colonial, subflabellate–meandroid sinuous calicinal series; costosepta arranged in 3 irregularly occurring size orders; columella lamellar, generally continuous.

Type locality of species. Upper Santonian of Austria (Gosau Group at Nefgraben).

Distribution. Coniacian–Santonian of Austria (Gosau Group), France (Corbières), and northern Spain (Catalonia), Maastrichtian of Jamaica, Selandian of Pakistan (Jhirk, Sind), Paleocene of Italy (Adriatic platform), Thanetian of Iran (Zagros Zone, southwestern Iran; this paper) and Slovenia.

New material. Qs33 (29, 32), Qs67 (39) (all from Zagros Zone, southwestern Iran).

Remarks. It should be noted that the dimensions of skeletal elements given for the species P. princeps by Löser et al., (2019: on p. 99, on Table “Fig. 90” width of rows given as 2.5–2.8 mm and septal density is given as 10–12 in 5 mm; on p. 100, width of rows given as 2.21–2.81 mm and septal density is given as 12 in 5 mm) are incorrect in that they do not cover the full range of dimensions seen in the holotype (see Baron-Szabo, 2014, Pl. 44, Fig. 1, Pl. 45, Figs. 1–, Pl. 46, Fig. 2) which are d (width of calicular series) : 1.5–5.5 mm [up to around 6 mm in a small number of places]; septa/mm: 12–17/5 (= often around 6‒7 septa in 2 mm).

Genus Strotogyra Wells, 1937

Type species. Rhipidogyra undulata Reuss, 1854, Santonian of Austria (Gosau Group).

Diagnosis. Colonial, flabelloid. Budding intramural, linear, polystomodaeal, forming corallites arranged uniserially, contorted, free laterally. Corallite centers indistinct when positioned in linear series, subdistinct or distinct in areas where direction of series changes or at end of calicinal series. Septa exsert, numerous, compact, non‒dentate on upper margins, granulated laterally. Costae bifurcating, distinct to base. Columella lamellar, discontinuous, often attached to processes from inner edges of septa. Endothecal dissepiments vesicular and subhorizontal. Wall septothecal, parathecal in earlier stages. Parathecal stereozone occurs irregularly. Multi‒lamellar epitheca s.l. often present.

Remarks. Genus Strotogyra was recently reevaluated and revised (Baron-Szabo, 2014, p. 43, Pl. 42, Figs. 4–8; Pl. 43, Figs. 1–3).

Strotogyra copoyensis (Frost & Langenheim, 1974 )

Fig. 11C

  1. *1974

    Placosmilia copoyensis n. sp.: Frost & Langenheim, p. 240‒242, Pl. 83, Figs. 1‒7.

Dimensions. d (series, wall–wall): 2.5‒5 mm, up to 9 mm in areas of bifurcation; s (monocentric): up to around 40; s/mm: 6‒8/2.

Description. Flabelloid colony; corallites indistinct to subdistinct meandroid series; costosepta arranged in 3‒4 size orders, regularly alternating in length and thickness; S1 reach center of corallite series; multilamellar epitheca s.l. present.

Type locality of species. Middle Eocene of Mexico (San Juan Formation).

Distribution. Upper Maastrichtian and Selandian‒Thanetian of Iran (Zagros Zone, southwestern Iran; this paper), Middle Eocene of Mexico (San Juan Formation).

New material. 2NG202 (14‒15) (Zagros Zone, Tarbur Formation, southwestern Iran); Qs80 (37), Qs95 (4‒6) (Zagros Zone, southwestern Iran); 2BN59‒1 (2, 4, 15, 24, 25, 30) 2BN59‒2 (10), BN‒59‒N16 (3), BN‒59‒N19 (4) (all Sistan Suture Zone, eastern Iran).

Remarks. In having corallites forming laterally free, uniserially calicinal series and a septothecal wall with developments of a parathecal stereozone, the specimens described from the Middle Eocene of Mexico by Frost and Langenheim (1974) rather correspond to the genus Strotogyra. Therefore, its new combination is suggested.

Family Placosmiliidae Alloiteau, 1952

Genus Placosmilia Milne Edwards & Haime, 1848a

Type species. Turbinolia cymbula Michelin, 1846, Santonian of France (Aude) (see Milne Edwards & Haime, 1848a).

Diagnosis. Colonial. Younger specimens flabellate, becoming meandroid in later ontogenetic stages. Budding intracalicinal, resulting in a single meandroid calicinal series. Costosepta compact, arranged bilaterally. Septal margins granular. Septal flanks often secondarily thickened which might cover granules and carinae. Endothecal dissepiments well-developed, occurring throughout the whole corallum. Columella lamellar, continuous or formed by irregularly occurring lamellar segments. Trabecular extensions of axial septal ends often fuse with columellar structures. Wall parathecal to septoparathecal. Multilamellar epithecal s.l. wall sometimes present.

Remarks. The genus Placosmilia was recently revised and reevaluated (Baron-Szabo, 2014, p. 34–35, Pl. 24, Figs. 1–5; Pl. 25, Figs. 1–5; Pl. 26, Figs. 1–7).

Placosmilia cf. fenestrata (Felix, 1900 )

Fig. 11E

  1. *1900

    Lasmogyra fenestrata: Felix, p. 3.

  2. v1903

    Lasmogyra fenestrata nov. sp.: Felix, p. 246, Pl. 21, Figs. 6‒8.

  3. v1982

    Placosmilia fenestrata (Felix) 1900: Beauvais, p. 68–69, Pl. 4, Fig. 4, Pl. 59, Figs. 3, 5–6.

  4. v1997

    Placosmilia fenestrata (Felix, 1900): Baron-Szabo, p. 73, Pl. 7, Fig. 5, Pl. 8, Figs. 2–3, 6.

  5. v2003

    Placosmilia fenestrata (Felix, 1900): Baron-Szabo, p. 73, Pl. 7, Fig. 5, Pl. 8, Figs. 2–3, 6 [cum synonymis].

  6. v2014

    Placosmilia fenestrata (Felix, 1900): Baron-Szabo, p. 34, ; Pl. 26, Figs. 6–7.

  7. 2019

    Phragmosgyra fenestrata (Felix, 1900): Löser, et al., p. 102.

Dimensions. d (min): 3‒6 mm; d (max): up to around 12 mm (incomplete specimens); s/mm: 7‒10/2.

Description. Fragments of a meandroid–flabelloid colony; coralla affected by rejuvenation; corallites of rejuvenation have d (min) of up to 2.2 mm, parent corallum is up to 6 mm in width; costosepta arranged in 2‒3 size orders in corallites of rejuvenation.

Type locality of species. Santonian of Austria (Gosau Group).

Distribution. Lower Coniacian and Santonian of Austria (Gosau Group), upper Maastrichtian of Iran (Zagros Zone, Tarbur Formation, southwestern Iran; this paper).

New material. 2NG202 (16), Rt-1171 (both Zagros Zone, Tarbur Formation, southwestern Iran).

Remarks. The assignment of the new Iranian material is based on the idea that the coralla represent flabelloid colonies that are in the process of rejuvenation, closely corresponding to the situation in material such as the syntype of Placosmilia psecadiophora (Felix) (= species considered to be a junior synonym of P. sinuosa) (see Fig. 11G). Because only colony fragments are preserved, the full dimensions of skeletal elements cannot be determined. The skeletal features present correspond to P. fenestrata.

Family Oculinidae Gray, 1847

Genus Oculina Lamarck, 1816

Type species. Oculina virginea Lamarck, 1816, Atlantic Ocean, Holocene (subsequent designation by Milne Edwards & Haime, 1850).

Diagnosis. Colonial; dendroid, ramose‒dendroid, encrusting, reptoid, and irregularly massive. Ramose‒dendroid colonies formed by alternate extracalicular budding with corallites found on all sides of branches. Costae present or absent. Coenosteum dense, striated (non‒costate) or smooth. Pali before S1 and S2 in a crown that appears rather regular in small‒size corallites (up to around 4 mm), becoming more irregular with increase in corallite size. Columella spongy, papillose, made of a small number of twisted segments, or absent. Endothecal dissepiments sparse or absent. Ahermatypic and hermatypic. Zooxanthellate and azooxanthellate species.

Oculina conferta Milne Edwards & Haime, 1850

Fig. 11D, F.

  1. *1850

    Oculina conferta: Milne Edwards & Haime, p. 27, Pl. 2, Fig. 2.

  2. 1857

    Oculina conferta: Milne Edwards & Haime, vol. 2, p. 109.

  3. 1860

    Oculina conferta: de Fromentel, p. 176.

  4. 1881

    Oculina conferta: Quenstedt, p. 970, Pl. 180, Fig. 48.

  5. 1925

    Oculina conferta M. Edw. et J. Haime 1850: Felix, pars 28, p. 222 (cum synonymis).

  6. 1997

    Oculina new sp.: Stemann, in Bryan et al, p. 33, Text—Fig. 2A.

  7. v1998

    Oculina conferta Milne Edwards & Haime, 1850: Turnšek & Drobne, p. 136, Pl. 5, Figs. 1–4.

  8. v2006

    Oculina conferta Milne Edwards & Haime, 1850: Baron-Szabo, p. 65, Pl. 13, Fig. 5.

Dimensions. d: 1.6‒2 mm, in areas of intense budding around 1 mm; s: 14–24 (+ s), in corallites in areas of intense budding 12.

Description. Dendro-phaceloid; corallites bud off nearly rectangular; septa compact, developed in irregular septal cycles, covered by spiniform and rounded granules laterally; costae short or absent; pali irregularly present; wall septothecal.

Type locality of species. Lower Eocene of England (London Clay).

Distribution. Paleocene of the USA (Alabama), Thanetian of Slovenia (Adriatic Platform), Selandian‒Thanetian of Iran (this paper, Sistan Suture Zone, eastern Iran; Suture Zagros Zone, southwestern Iran), Lower Eocene of England.

New material. 1pz92 (13), 2pz94 (10, 18), BN‒59‒N1 (4‒II) (all from Sistan Suture Zone, eastern Iran); Qs27 (1), Os87 (37), Qs93 (19) (all form Zagros Zone, southwestern Iran).

Family Dendrophylliidae Gray, 1847

Genus Lobopsammia Milne Edwards & Haime, 1848d

Type species. Lithodendron cariosum Goldfuss, 1826, Eocene of France (subsequent designation by Milne Edwards & Haime, 1850).

Diagnosis. Colonial, dendroid, forming small arborescent colonies by di- and tristomodaeal intracalicular budding. Corallites often irregularly shaped or elongate in outline. Septa subcompact to porous. Wall synapticulothecal, costate. Costae granular and serrate by deep intercostal furrows. Septa arranged in Pourtalès plan. Columella trabecular, mesh‒like or made of twisted and elongate segments. Endotheca sparsely present or absent. Epitheca sensu lato present at base.

Lobopsammia cariosa (Goldfuss, 1826 )

Fig. 11H

  1. v*1826

    Lithodendron cariosum nobis: Goldfuss, p. 45, Pl. 13, Fig. 7.

  2. v1866

    Lobopsammia cariosa, Goldfuss, sp.: Duncan, p. 48, Pl. 7, Figs. 6‒10.

  3. non1889

    Lobopsammia cariosa Michelin: Reis, p. 106‒107, Text—Fig. III.

  4. 1925

    Lobopsammia cariosa Goldfuss, sp.: Felix, p. 165 [cum synonymis].

  5. non1914

    Lobopsammia cariosa Goldf.: Oppenheim, p. 700‒701, Pl. 26, Figs. 9‒12.

  6. 1974

    Lobopsammia cariosa (Goldfuss, 1827): Eliášová, 145–146, Text—Fig. 21.

  7. v2013

    Lobopsammia cariosa: White, p. 245, Pl. 11, Figs. c, e, p. 246, Pl. 12, Fig. h, p. 247, Pl. 13, Fig. i [some of the specimens studied by one of us (RBS)].

Dimensions. d (great): 2.5–4 mm, in areas of intense budding 1 mm or less; d (small): 2.2–3 mm; s: 24 to around 40.

Description. Dendroid colony; corallite are elliptical in outline; septa nearly equal in thickness, developed in 3 to 5 size orders regarding septal length; columella irregularly parietal, small.

Type locality of species. Eocene of France.

Distribution. Selandian–Thanetian of Iran (this paper; Mount Chatorsh, central Iran; Zagros Zone, southwestern Iran), Eocene of the Czech Republic, England (Brockenhurst Bed, Headon Beds), and France, Upper Eocene of Ukraine.

New material. AH173 (61) (Mount Chatorsh, central Iran); Qs67 (4, 19), ?Qs91 (22), Qs93 (34, 38–41) (all from Zagros Zone, southwestern Iran).

Remarks. In having corallites forming meandroid series, the material described from the Eocene of Slovakia by Oppenheim (1914, p. 700‒701, Pl. 26, Figs. 9‒12) differs from Lobopsammia and might be related to Stichopsammia Felix. Because the material from the Lower Oligocene of Germany (Reit im Winkel) assigned to Lobopsammia cariosa by Reis (1889, p. 106‒107, Text—Fig. III) is described as having an axial corallite around which secondary corallites occur, it differs from Lobopsammia and might belong to genera such as Dendrophyllia (see, e.g., Baron-Szabo & Cairns, 2019, p. 4, Fig. 1d) or Cladopsammia (see, e.g., Baron-Szabo & Cairns, 2019, p. 9, Fig. 1b).

Family Agariciidae Gray, 1847

Genus Trochoseris Milne Edwards & Haime, 1849a

Type species. Anthophyllum distortum Michelin, 1844, Eocene of France (Auvert) (see Milne Edwards & Haime, 1849a).

Diagnosis. Solitary, often turbinate or trochoid, subpatellate during early ontogenetic stages possible, fixed. Septa subcompact to porous, beaded marginally. Columella papillose. Synapticulae abundant. Pennular-structures (menianae) occasionally present. Endothecal dissepiments thin, sparse or absent. Wall synapticulothecal.

Trochoseris aperta Duncan, 1864

Fig. 11B

  1. v*1864

    Trochoseris aperta, nobis: Duncan, p. 303, Pl. 19, Fig. 5.

  2. v1880

    Elliptoseris aperta, Duncan: Duncan, p. 48, Pl. 8, Figs. 3‒6 [topotypes studied].

  3. v1880

    Trochoseris aperta, nobis: Duncan, p. 107, Pl. 27, Figs. 9, 10.

  4. v1899

    Trochosmilia hilli, sp. nov.: Vaughan, p. 233, Pl. 36, Figs. 1‒4.

  5. v1899

    Trochoseris catadupensis, sp. nov.: Vaughan, p. 242, Pl. 39, Figs. 5, 6 [topotypes studied].

  6. v1919

    Trochoseris catadupensis Vaughan: Vaughan, p. 426.

  7. v1919

    Trochoseris meinzeri, new species: Vaughan, p. 426, Pl. 106, Figs. 2, 2a, 2b.

  8. v1934b

    Trochoseris catadupensis Vaughan: Wells, p. 78, Pl. 2, Figs. 9, 10.

  9. v1941

    Trochoseris catadupensis Vaughan: Wells, p. 288, Pl. 1, Fig. 1.

  10. ?1974

    Trochoseris (?) sp. cf. T. meinzeri Vaughan: Frost & Langenheim, p. 197, Pl. 61, Fig. 4.

  11. v1992

    Trochoseris meinzeri Vaughan, 1919: Budd et al., p. 593.

  12. v2002

    Trochoseris catadupensis Vaughan: Mitchell, p. 6 ff., Table 1 (topotypes studied).

  13. v2002

    Trochoseris catadupensis Vaughan, 1899: Baron-Szabo, p. 122, Pl. 84, Figs. 3, 5.

  14. v2003

    Trochoseris catadupensis Vaughan, 1899: Schafhauser et al., p. 190, tab 1.

  15. 2005

    Trochoseris catadupensis Vaughan, 1899: Filkorn et al., p. 123, Fig. 2h.

  16. ?2006

    Trochoseris catadupensis Vaughan, 1899: Lalor & Távora, p. 188, Text—Fig. 1 (Foto 1).

  17. v2006

    Trochoseris aperta Duncan, 1864: Baron-Szabo et al., p. 25, Fig. 5.4.

  18. v2008

    Trochoseris aperta Duncan, 1864: Baron-Szabo, p. 135–136, Pl. 11; Figs. 5a‒7b [cum synonymis].

Dimensions. d: 7.5 × 10.5 mm; s: 96 + s.

Description. Corallum elliptical in outline; septa developed in 6 incomplete cycles in 6 systems; paliform and pennular structures irregularly present; columella papillose.

Type locality of species. Lower Miocene of Pakistan (Sind, Kurachee).

Distribution. Campanian of Cuba, Campanian–lower Maastrichtian of central Saudi Arabia, Campanian‒Maastrichtian and Eocene–Oligocene of Jamaica, Maastrichtian of Mexico (Ocozocoautla and Cardenas Formations), Thanetian of Iran (Zagros Zone, southwestern Iran; this paper) and the ?USA (Alabama, Salt Mountain Limestone), Danian of Ukraine, Selandian‒Eocene of Pakistan, ?Upper Eocene of Mexico (Ixtaclum shale). Eocene–Oligocene of Cuba, Oligocene of Panama, Lower Miocene of Pakistan and ?Brazil.

New material. Qs33 (33) (Zagros Zone, southwestern Iran).

Remarks. Because the material from the Lower Miocene of Brazil (Lalor & Távora, 2006, p. 188) represents a fragment of unclear dimensions, its relationship to the species T. catadupensis (= interpreted to be a junior synonym of T. aperta) cannot be determined.

Family Actinacididae Vaughan & Wells, 1943

Genus Actinacis d’Orbigny, 1849

Type species. Actinacis martiniana d’Orbigny, 1850, Upper Santonian of France (Figuières).

Diagnosis. Colony plocoid. Colony formation by extracalicinal budding. Corallites are embedded in a coenosteum. Costosepta have few, but large perforations. Anastomosis present. Septal flanks granular. Wall synapticulothecate, incomplete. Columella parietal or substyliform or formed by elongated segments. No pali. Synapticulae abundant. Endothecal dissepiments sparse. Skeletal microstructure consists of simple and compound trabeculae.

Actinacis barretti Wells, 1934a

Fig. 12A

  1. v*1934a

    Actinacis barretti: Wells, p. 101, Pl. 4, Figs. 1‒2.

  2. v1960

    Actinacis barretti Wells: Berryhill, et al., p. 151.

  3. 1974

    Actinacis caribiensis: Frost & Langenheim, p. 217, Pl. 71, Figs. 1‒5.

  4. 1974

    Actinacis sp. cf. A. barretti Wells: Frost & Langenheim, p. 219, Pl. 72, Figs. 1‒5.

  5. 1974

    Porites anguillensis Vaughan: Frost & Langenheim, p. 221, Pl. 75, Figs. 1‒3.

  6. 1974

    Goniopora copoyensis n. sp.: Frost & Langenheim, p. 238, Pl. 81, Figs. 5‒6.

  7. 1991

    Actinacis alabamensis: Bryan, p. 426ff.

  8. 1997

    Actinacis alabamensis: Stemann, in Bryan et al., p. 33, Text—Fig. 1A.

  9. v1997

    Actinacis barretti Wells, 1934: Vecsei & Moussavian, p. 131, Pl. 36, Fig. 3.

  10. v2008

    Actinacis barretti Wells, 1934: Baron-Szabo, p. 103‒104, Pl. 8, Fig. 10 [cum synonymis].

Fig. 12
figure 12

A Actinacis barretti Wells, 1934; Qs93 (71), calicular view of colony, thin section; ?Selandian, Qorban, Zagros Zone, southwestern Iran. B Actinacis reussi Oppenheim, 1930; Pb43 (1), calicular view of colony, thin section; Selandian (?Danian), Kuh-e-Patorgi, Sistan Suture Zone, eastern Iran. C Goniopora cf. microscopica (Duncan, 1863); Qs94 (4‒5), calicular view of colony, thin section; ?Selandian, Qorban, Zagros Zone, southwestern Iran. D Synastrea sp.; 2NG61 (11), calicular view of colony, thin section; upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. E Cunnolites angiostoma (Kühn, 1933); FT1337, calicular view of corallum, slightly oblique; upper Maastrichtian (Tarbur Fm.), Mandegan, Zagros Zone, southwestern Iran. F Faksephyllia faxoensis (Beck, in Lyell, 1837); Qs50 (13), calicular view of branch, thin section; Thanetian, Qorban, Zagros Zone, southwestern Iran. G Asterosmilia alloiteaui (Alloiteau & Tissier, 1958); Qs33 (28), calicular view of corallum, thin section; Thanetian, Qorban, Zagros Zone, southwestern Iran. H Bathycyathus lloydi (Vaughan, 1920); 2NG122 (6), calicular view of corallum, thin section; upper Maastrichtian (Tarbur Fm.), Naghan, Zagros Zone, southwestern Iran. I Bathycyathus corneti (Alloiteau & Tissier, 1958); FT1326, calicular view of corallum; upper Maastrichtian (Tarbur Fm.), Mandegan, Zagros Zone, southwestern Iran

Dimensions. d: 0.8‒1.2 mm; c–c: 1.2‒2.1 mm; s: 18‒24, often 20.

Description. Submassive colony; corallites are regularly disposed over the colony, circular to subcircular in outline; costosepta are thin, subequal in thickness, irregularly alternating in length.

Type locality of species. Middle Eocene of Jamaica (Yellow Limestone).

Distribution. Upper Maastrichtian and Paleocene (?Selandian) of Iran (Zagros Zone, southwestern Iran; this paper), Danian of Puerto Rico, Thanetian of Italy (Maiella Platform) and the USA (Alabama, Salt Mountain Limestone), Middle Eocene of Jamaica (Yellow Limestone) and Mexico (San Juan Formation), Upper Oligocene of Mexico (La Quinta Formation).

New material. 2NG202 (13a) (Zagros Zone, Tarbur Formation, southwestern Iran); Qs93 (71) (Zagros Zone, southwestern Iran).

Actinacis reussi Oppenheim, 1930

Fig. 12B

  1. v*1930

    Actinacis reussi n. sp.: Oppenheim, p. 8, Pl. 1, Figs. 6, 6a, Pl. 10, Figs. 2, 2a, Pl. 15, Fig. 6 [topotypes studied].

  2. v1982

    Actinacis reussi Oppenheim, 1930: Beauvais, vol. 2, p. 271, Pl. 48, Figs. 5, 6. [topotypes studied]

  3. v1994

    Actinacis reussi Oppenheim, 1930: Turnšek, p. 14, Pl. 10, Figs. 1‒3.

  4. v2003

    Actinacis martiniana d’Orbigny, 1850: Götz, p. 5ff., Pl. 1, Fig. 2.

  5. 2005

    Actinacis cognata Oppenheim: Baceta, et al., p. 128ff, Fig. 8B.

  6. v2008

    Actinacis reussi Oppenheim, 1930: Baron-Szabo, p. 108, Pl. 8, Fig. 12 [cum synonymis].

  7. v2014

    Actinacis reussi Oppenheim, 1930: Baron-Szabo, p. 52‒53, Pl. 57, Fig. 4.

Dimensions. d: 1.1‒1.8 mm, in areas of intense budding around 0.8 mm; c–c: 1.6‒2.4 mm; s: 24‒26, in corallites in areas of intense budding 12.

Description. Plocoid (?submassive) colony; corallites irregularly elliptical in outline; costosepta often subconfluent, irregularly alternating in length and thickness; columella made of irregularly shaped portions, often fused with one or more septal axial ends.

Type locality of species. Santonian of Austria (Gosau Group at Pass Gschütt-Graben).

Distribution. Lower Coniacian of southern France, Upper Coniacian‒Santonian of Austria (Gosau Group), Santonian‒Campanian of Slovenia, Santonian and upper Campanian of Spain, Maastrichtian of Jamaica, Danian and Thanetian of northern Spain, Danian or Selandian of Iran (Sistan Suture Zone, eastern Iran; this paper).

New material. Pb43 (1) (Sistan Suture Zone, eastern Iran).

Family Poritidae Gray, 1840

Genus Goniopora de Blainville, 1830

Type species. Goniopora pedunculata Quoy & Gaimard, in de Blainville, 1830, Holocene, New Guinea.

Diagnosis. Colonial, massive, columniform or ramose, rarely incrusting. Budding extracalicular and extracalicular‒marginal. Corallites united closely or separated by a reticulate coenosteum. Septa subcompact to porous, arranged bilaterally. Pali present. Columella spongy or made of twisted segments. Synapticulae present. Endothecal dissepiments thin, few in number. Wall parathecal or synapticulothecal, incomplete.

Goniopora cf. microscopica (Duncan, 1863 )

Fig. 12C

  1. v*1863

    Alveopora microscopica: Duncan, p. 426, Pl. 14, Fig. 5.

  2. v1900

    Litharaea Colae, sp. nov.: Gregory, p. 37, Pl. 2, Figs. 12a‒b.

  3. v1919

    Goniopora regularis var. microscopica (Duncan): Vaughan, p. 492.

  4. 1921

    Goniopora microscopica (Duncan): Vaughan et al., p. 95, 108, and 111.

  5. 1986

    Goniopora microscopica (Duncan): Foster, p. 86.

  6. v2008

    Goniopora microscopica (Duncan, 1863): Baron-Szabo, 145‒146, Pl. 13, Figs. 1‒2 [cum synonymis].

Dimensions. d: 1.2‒1.6 mm; c–c: ca. 1.4 mm; s: 24.

Description. Fragment of a ?subramose, cerioid colony; septa porous, nearly equal in thickness; columella weak, made of a few lamellar segments.

Type locality of species. Upper Oligocene of Antigua (Antigua Formation).

Distribution. Maastrichtian of Jamaica, Paleocene (?Selandian) of Iran (Zagros Zone, southwestern Iran; this paper), Selandian of Pakistan (Jhirk, Sind), Oligocene of Haiti, Upper Oligocene (Antigua Formation) of Antigua.

New material. Qs94 (4‒5) (Zagros Zone, southwestern Iran).

Remarks. Because only colony fragments are available, the full range of dimensions of skeletal elements cannot be determined. The skeletal features present correspond to G. microscopica.

Family Synastreidae Alloiteau, 1952

Genus Synastrea Milne Edwards & Haime, 1848b

Type species. Astrea agaricites Goldfuss, 1826, Santonian of Austria (greater Salzburg area, Abtenau) (see Milne Edwards & Haime, 1848b).

Diagnosis. Colonial, massive, thamnasterioid. Budding intracalicinal. Septa confluent, perforated, marginally moniliform, granulated and pennulated laterally. Columella subpapillose, rudimentary. Synapticulae abundant. Endothecal dissepiments thin, sparse.

Synastrea sp.

Fig. 12D

Dimensions. c–c: 2‒4 mm; s/mm: 8‒10.

Description. Fragment of a thamnasterioid colony; septa are nearly equal in thickness, irregularly alternating in length.

Distribution. Upper Maastrichtian of Iran (this paper; Zagros Zone, Tarbur Formation, southwestern Iran).

New material. 2NG61 (11) (Zagros Zone, Tarbur Formation, southwestern Iran).

Remarks. Because only a colony fragment is preserved, the full dimensions of skeletal elements cannot be determined.

Family Cunnolitidae Alloiteau, 1952

Genus Cunnolites Alloiteau, 1957

Type species. Cunnolites barrerei Alloiteau, 1957, Campanian of France.

Diagnosis. Solitary, cunnolitid (cupolate), free, circular or elliptical in outline. Base flat to concave. Calicular pit circular or elongate. Septa perforate (younger septa) to subcompact. Columella absent or feebly developed, trabecular. Synapticulae abundant. Endothecal dissepiments thin, few in number. Epitheca present or absent.

Cunnolites angiostoma (Kühn, 1933)

Fig. 12E

  1. v*1933

    Cyclolites angiostoma nov. spec.: Kühn, p. 179, pl. 17, Figs. 5–6.

  2. 1942

    Cyclolites elliptica Lamarck (Guettard sp.): Maccagno, p. 793, pl. 1, Figs. 5–5b.

  3. v2008

    Cunnolites angiostoma (Kühn, 1933): Baron-Szabo, p. 176, Pl. 16, Fig. 1.

Dimensions. d (d x D): 9 × 10.5 mm; septa: around 120; septa/mm (peripheral area): 8‒9/2; septa/mm (calicinal pit): 5‒6/1; d/D: 0.86.

Description. Cupolate corallum, nearly circular in outline; septa thin, nearly equal in thickness, straight to slightly wavy; calicinal pit small, elongate; calicinal groove parallel to calicinal pit might be present.

Type locality of species. Upper Maastrichtian of Iran (Neyriz, Esfahan).

Distribution. Upper Maastrichtian of Iran (Neyriz; Zagros Zone, southwestern Iran; this paper).

New material. FT1337–FT1338 (Zagros Zone, southwestern Iran).

Remarks. The new material from Iran represents a rather more juvenile form. Corallum shape and dimensions of skeletal elements very closely correspond to the holotype of C. angiostoma (see Baron-Szabo, 2008).

Family Caryophylliidae Dana, 1846

Genus Faksephyllia Floris, 1972

Type species. Caryophyllia faxoensis Beck, in Lyell, 1837, Middle Danian of Denmark (Fakse limestone); neotype designation by Floris (1972, p. 76).

Diagnosis. Colonial, subdendroid, fasciculate or phaceloid. Budding intracalicular, generally distomodaeal; tristomodaeal condition in areas of intense budding possible. Budding by septal division with succeeding dichotomic forking of corallites in some calices. Costosepta compact, smooth or covered by small, rounded granules laterally; straight, free, and cuneiform, or irregularly fusing with neighboring ones in a fashion that resembles both dendrophylliid and micrabaciid septal arrangements. Costae short or absent. Pali, stereome, coenosteum, and synapticulae absent. Columella weakly to well developed, spongy‒papillose or formed by a small number of twisted segments, or absent. When absent, trabecular extensions of septal axial ends can form a pseudocolumella. Endothecal dissepiments thin, sparse, vesicular to subtabulate. Wall thin or thick, septothecal, septoparathecal, and parathecal. Epitheca s.l. present or absent.

Faksephyllia faxoensis (Beck, in Lyell, 1837 )

Fig. 12F

  1. v*1837

    Caryophyllia faxoensis: Beck, in Lyell, 1837, p. 249, Fig. 4 (topotypes studied).

  2. v1972

    Faksephyllia faxoensis gen. n. & Beck, in Lyell (1837) sp.: Floris, p. 73‒80, Pl. 4, Figs. 7‒11; Pl. 5, Figs. 1‒5 [topotypes studied] [cum synonymis].

  3. v2014

    Faksephyllia faxoensis (Lyell, 1837): Lauridsen & Bjerager, p. 1ff., Fig. 3C [topotypes studied].

  4. v2016

    Faksephyllia faxoensis (Beck, in Lyell, 1837): Baron-Szabo, p. 529‒533, Pl. 1, Figs. 1‒13; Pl. 2, Figs. 1‒15 [cum synonymis].

  5. v2020

    Faksephyllia faxoensis (Beck, in Lyell, 1837): Baron-Szabo & Sanders, p. 330‒332, Pl. 2, Figs. 1‒2.

Dimensions. d: 1‒4 × 1.7‒5.5 mm; height of branches: up to around 35 mm; s: 18‒44.

Description. Fragments of a branching colony; corallites irregularly elliptical in outline; septa are subequal in thickness;

Type locality of species. Middle Danian of Denmark (Fakse limestone).

Distribution. Paleocene of Austria (Kambühel limestone, Styria), Danian of Azerbaijan (Dash‒Salakhly). Kazakhstan (Mangyshlag), Sweden (Limhamn), and Greenland (Kangilia and Nûgssuaq areas), middle Danian of Denmark (Fakse), Selandian‒Thanetian of Iran (this paper; central Iran, Mount Chatorsh; eastern Iran, Sistan Suture Zone southwestern Iran), ?Eocene of Bosnia‒Herzegovina (Rošići area), lower Oligocene of Italy (Monte Pulgo and Castelgomberto, Vicenza area), Austria (quarry Wimpissinger), Germany (Reit im Winkel, Bavaria, Reiter beds), and ?Hungary.

Type locality of species. Middle Danian of Denmark (Fakse limestone).

New material. BN‒52‒b (3), BN‒59‒N1 (3, 4‒I, 7), ?BN‒59‒N10 (2), BN‒60‒b (4), BN‒76 (2, 3) (all Sistan Suture Zone, eastern Iran); Qs42 (40), Qs50 (13), ?Qs59 (159), Qs94 (13), Qs96 (18) (all Zagros Zone, southwestern Iran).

Remarks. Though the specimens are generally preserved as fragments, the skeletal features present in the material very closely correspond to the species F. faxoensis (species recently revised and evaluated; Baron-Szabo, 2016).

Genus Asterosmilia Duncan, 1867

Type species. Trochocyathus abnormalis Duncan, 1863, Miocene of the West Indies (subsequent designation Vaughan, 1919).

Diagnosis. Solitary, trochoid‒ceratoid, generally free, subcircular to elliptical in outline. Costosepta compact, minutely and densely granulated laterally. Costae prominent or flat. Pali or paliform lobes next to last one or two cycles, usually opposite S3. Columella lamellar at surface, trabecular below. Wall septothecal to septoparathecal. Epithecal wall s.l. pellicular when present.

Asterosmilia alloiteaui (Alloiteau & Tissier, 1958 )

Fig. 12G

  1. v*1958

    Sphenotrochopsis alloiteaui nov. sp.: Alloiteau & Tissier, p. 269, Pl. 1, Figs. 1a‒b’.

  2. v1958

    Sphenotrochopsis chavani nov. sp.: Alloiteau & Tissier, p. 271, Pl. 1, Figs. 2a‒b’.

  3. v1958

    Sphenotrochopsis straeleni nov. sp.: Alloiteau & Tissier, p. 272, Pl. 1, Figs. 3a‒b’.

  4. v1958

    Kionotrochus briarti nov. sp.: Alloiteau & Tissier, p. 277, Pl. 1, Figs. 7a‒b’.

  5. v1958

    Kionotrochus montensis nov. sp.: Alloiteau & Tissier, p. 280, Pl. 1, Figs. 6a‒b’.

  6. v2008

    Asterosmilia alloiteaui (Alloiteau & Tissier, 1958): Baron-Szabo, p. 78‒79, Text—Figs. 12A‒J.

Dimensions. d: 1.1‒4 × 1.6‒6 mm; s: 24‒48.

Description. Corallite elliptical in outline; costosepta developed in 3 cycles in 6 systems; septa of a beginning fourth cycle present in corallites larger 3 mm; axial ends of septa of some S1 and S2 fuse with columella.

Type locality of species. Upper Danian of Belgium.

Distribution. Upper Danian of Belgium, Selandian‒Thanetian of Iran (this paper; Zagros Zone, southwestern Iran; Sistan Suture Zone, eastern Iran; Mount Chatorsh, central Iran).

New material. AH175 (26‒28) (Mount Chatorsh, central Iran); BN‒59‒b (81), BN59‒N3 (3), BN‒59‒N12 (1), 2BN59‒1 (14) (all from Sistan Suture Zone, eastern Iran); Qs33 (28), Qs42 (40) (all from Zagros Zone, southwestern Iran). ?Pb62 (1).

Genus Bathycyathus Milne Edwards & Haime, 1848c

Type species. Bathycyathus chilensis Milne Edwards & Haime, 1848c, Holocene, Pacific Ocean (off the coast of Chile).

Diagnosis. Turbinate or variably conical, fixed or free when solitary, forming phaceloid clumps by basal budding or parricidal intracalicular budding when colonial. Corallites often circular in outline in juvenile stages, becoming compressed in later ontogenetic stages. Costosepta laminar, compact. Septal margins smooth or nearly smooth. Pali not distinct from columellar laths. Columella formed by twisted trabecular segments. Endothecal dissepiments few in number. Wall septothecal, septoparathecal when not properly thickened.

Bathycyathus lloydi (Vaughan, 1920 )

Fig. 12H

  1. v*1920

    Paracyathus lloydi, n. sp.: Vaughan, p. 62, Pl. 10, Figs. 3‒3b.

  2. v1920

    Paracyathus thomi, n. sp.: Vaughan, p. 63, Pl. 10, Figs. 4‒4d.

  3. v1920

    Paracyathus kayserensis, n. sp.: Vaughan, p. 68, Pl. 10, Figs. 5‒5b.

  4. v1933

    Steriphonotrochus ? manorensis n. sp.: Wells, p. 123 (205), Pl. 14, Fig. 21.

  5. 1972

    Paracyathus kangliaensis sp. n.: Floris, p. 60, Pl. 3, Figs. 6A‒9.

  6. v2008

    Bathycyathus lloydi (Vaughan, 1920): Baron-Szabo, p. 53–54, Pl. 4, Figs. 3a–4b.

Dimensions. d: 3.5‒5 × 5‒6 mm (slightly incomplete specimens); s: 36‒52; d/D: 0.77‒0.94.

Description. Corallite is circular to elliptical in outline; costosepta are developed in 4 size orders, irregularly alternating in length and thickness; columella is made of flexuous segments, connected to trabecular extensions of axial ends of septa.

Type locality of species. Upper Maastrichtian of the USA (Cannonball Member, Lance Formation).

Distribution. Upper Maastrichtian and Selandian‒Thanetian of Iran (this paper; Tarbur Fm., Zagros Zone, southwestern Iran; Sistan Suture Zone, eastern Iran), upper Maastrichtian of the USA (Navarro Formation, Texas; Cannonball Marine Formation), lower Danian of Denmark (Greenland).

New material. 2NG122 (6), 2NG127 (12), 2NG199‒1 (2) (all from Tarbur Fm., Zagros Zone, southwestern Iran); P316008, 2pb50 (20) (all from Sistan Suture Zone, eastern Iran); Qs31 (21), (Zagros Zone, southwestern Iran).

Remarks. Ontogenetic studies on the species B. lloydi were carried out by Baron-Szabo (2008, p. 53–54, Pl. 4, Figs. 3a–4b), according to which the Iranian material corresponds to the juvenile stage of B. lloydi.

Bathycyathus corneti (Alloiteau & Tissier, 1958 )

Fig. 12I

  1. v*1958

    Kionotrochus corneti nov. sp.: Alloiteau & Tissier, p. 279, pl. 1, Figs. 9a–b’.

  2. v2008

    Bathycyathus corneti (Alloiteau & Tissier, 1958): Baron-Szabo, p. 52‒53, Text—Figs. 3A‒J [cum synonymis].

Dimensions. d (d × D): 2 × 2.3 mm; s: 42; d/D: 0.87.

Description. Corallite is circular to elliptical in outline; costosepta are developed in 4 size orders, irregularly alternating in length and thickness; columella is made of flexuous segments, connected to trabecular extensions of axial ends of septa.

Type locality of species. Danian of Belgium.

Distribution. Upper Maastrichtian of Iran (Zagros Zone, southwestern Iran; this paper), Danian of Belgium.

New material. FT326 (Zagros Zone, southwestern Iran).

Remarks. Ontogenetic studies on the species B. corneti were carried out by Baron-Szabo (2008, p. 52–53, Text—Figs. 3A–J), according to which the Iranian material corresponds to the juvenile stage of B. corneti.

Family Turbinoliidae Milne Edwards & Haime, 1848c

Genus Turbinolia Lamarck, 1816

Type species. Turbinolia sulcata Lamarck, 1816, Middle Eocene of France (by subsequent designation Milne Edwards & Haime, 1850).

Diagnosis. Solitary, ceratoid, circular in cross section and small (rarely exceeding 3.5 mm) in diameter; septa compact, exsert, hexamerally arranged in 2–4 cycles (12–48 septa); costae independent in origin, usually well-developed, smooth ridges, and C1–2 sometimes ‘thickened basally’. Costae present or absent, depending on species; in type species present as alignment of low mounds, becoming low ridges only near calice; series of circular pits up to 70 μm in diameter flank each costa, each bordered on distal and proximal edges by small thecal buttresses oriented perpendicular to the costa and often fused to the costae, if present; thecal pits thus appear to form a double column, often in alternating arrangement. Paliform structures absent. Columella quite variable, including styliform, stellate, and lamellar.

Turbinolia dickersoni Nomland, 1916

Fig. 13A

  1. (v)*1916

    Turbinolia dickersoni, n. sp.: Nomland, p. 61, Pl. 3, Figs. 5‒8.

  2. v1945

    Turbinolia barbadiana Wells, n. sp.: Wells, p. 13, Pl. 3, Figs. 8‒10.

  3. v1945

    Turbinolia barbadiana var. crassicostata Wells, n. var.: Wells, p. 14, Pl. 3, Fig. 11.

  4. 1997

    Turbinolia dickersoni Nomland, 1916: Cairns, p. 24.

  5. 1997

    Turbinolia frescoenis Barta‒Calmus, 1969: Cairns, p. 24.

  6. v2008

    Turbinolia dickersoni Nomland, 1916: Baron-Szabo, p. 91‒92, Text—Figs. 17A‒B [cum synonymis].

Dimensions. d: 2 mm; s: 24.

Description. Corallite circular in outline; costosepta developed in 3 cycles in 6 systems; S1 and S2 are nearly equal in length and thickness.

Type locality of species. Paleocene of the USA (Cannonball Marine Formation).

Distribution. Danian‒Selandian of the USA (Mississippi, Alabama), ?Selandian‒Thanetian of Iran (this paper; Zagros Zone, southwestern Iran), Eocene of Ivory Coast, Mexico, and the USA (Alabama, Louisiana, Mississippi, and Texas), Lower Eocene of Barbados (Upper Scotland Formation) and the USA (California), Upper Eocene of Colombia, Oligocene of Peru (Mirador facies).

New material. Qs26-a (68), Qs80 (29) (all from Zagros Zone, southwestern Iran).

Remarks. Species Turbinolia dickersoni well documented in Nomland (1916, p. 61, Pl. 3, Figs. 5–8.)

Family Helioporidae Moseley, 1876

Genus Heliopora de Blainville, 1830

Type species. Millepora coerulea Pallas, 1766, Indian Ocean, Holocene (by subsequent designation in Milne Edwards & Haime, 1851, p. 148).

Diagnosis. Colonial, plocoid. Corallites subcircular to irregularly elliptical in outline. Budding extracalicular. Pseudosepta compact, short, generally 10% or less of the corallite diameter in length. Endothecal tabulae numerous, thin. Corallite wall trabecular, compact or has pores. Coenosteum made of small‒sized (mainly 100‒150 µm in diameter) tubes.

Heliopora incrustans Nielsen, 1917

Fig. 13B

  1. *1917

    Heliopora incrustans n. sp.: Nielsen, p. 12‒13, Figs. 16‒17.

  2. 1990

    Heliopora incrustans Nielsen, 1917: Bernecker & Weidlich, p. 115, Pl. 31, Fig. 5, Pl 32, Fig. 4.

  3. 2014

    Heliopora incrustans (Nielsen, 1917): Lauridsen & Bjerager, p. 5ff., Fig. 4A.

Dimensions. d (small): 0.5‒1.1 mm; d (great): up to around 1.8 mm; pseudosepta: ranging between 20 and 30; tubes/0.5 mm2: generally 10‒15.

Description. Small (around 10 mm in diameter), massive colony; corallite tubes are subcircular in outline; pseudosepta developed extremely irregularly in size and thickness, some are around 20% the corallite diameter in length, other are spine‒like and less than 50 µm in length.

Type locality of species. Middle Danian of Denmark (Faxe limestone).

Distribution. Middle Danian of Denmark (Fakse limestone), Selandian or Thanetian of Iran (Zagros Zone, southwestern Iran; this paper).

New material. Qs86 (1‒4) (Zagros Zone, southwestern Iran).

Remarks. Species Heliopora incrustans well documented in Lauridsen & Bjerager, (2014, Fig. 4A).

Fig. 13
figure 13

A Turbinolia dickersoni Nomland, 1916; Qs26-a (68), calicular view, thin section; Thanetian, Qorban, Zagros Zone, southwestern Iran; B Heliopora incrustans Nielsen, 1917; calicular view of colony, slightly oblique, thin section; Qs86 (1), Selandian (Thanetian?), Qorban, Zagros Zone, southwestern Iran

Availability of data and materials

The material is housed at the Department of Geology, Yazd, University, Iran, and is available for study. For data used see References.

References

  • d’Achiardi, A. (1875). Coralli eocenici del Friuli. Atti Della Societa Toscana Di Scienze Naturali Resindente in Pisa, 1, 67–86.

    Google Scholar 

  • Alloiteau, J. (1952). Embranchment des Coelentérés. II. Madréporaires post–paléozoïques. In: Piveteau, J. (Ed.), Traité de Paléontologie, Vol. 1. Masson, Paris, pp. 539–684. (http://sdrv.ms/RBacJ8)

  • Alloiteau, J. (1957). Contribution à la systématique des madréporaires fossiles (pp. 462). Paris: Centre National Recherche Scientifique.

    Google Scholar 

  • Afghah, M. (2022). Microfacies and depositional environment of Tarbur Formation (Upper Cretaceous-Lower Palaeocene) Zagros area, southwestern Iran. Geological Journal, 2022, 1–16. https://doi.org/10.1002/gj.4450

    Article  Google Scholar 

  • Alloiteau, J., & Tissier, J. (1958). Les Madréporaires du Montien des Petites Pyrénées. Bulletin De La Societe D’histoire Naturelle De Toulouse, 93, 243–291.

    Google Scholar 

  • Álvarez-Pérez, G. (1993). Cnidaria Fòssils de la Conca d’Igualda (p. 261). Barcelona.: Universitat de Barcelona.

    Google Scholar 

  • Álvarez-Pérez, G. (1997). New Eocene coral species from Igualada (Barcelona, NE of Spain). Boletin De La Real Sociedad Espanola De Historia Natural, Seccion Geologica, 91, 297–304.

    Google Scholar 

  • Álvarez-Pérez, G., Busquets, P., Vilaplana, M., & Ramos-Guerrero, E. (1989). Fauna coralina paleogena de las Islas Baleares (Mallorca y Cabrera), Espana [Paleogene coral fauna from the Baleares Islands (Mallorca and Cabrera), Spain]. Batalleria, 3, 61–68.

    Google Scholar 

  • Baceta, J. I., Pujalte, V., & Bernaola, G. (2005). Paleocene coralgal reefs of the western Pyrenean basin, northern Spain, New evidence supporting an earliest Paleogene recovery of reefal ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 224, 117–143.

    Article  Google Scholar 

  • Barrier, E. & Vrielynck, B. (2008). Palaeotectonic maps of the Middle East-tectono-sedimentary–palinspastic maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW/CCGM), Paris, 14 maps.

  • Baron-Szabo, R.C. (1997). Zur Korallenfazies der ostalpinen Kreide (Helvetikum, Allgäuer Schrattenkalk; Nördliche Kalkalpen, Brandenberger Gosau), Taxonomie, Paläökologie. Zitteliana, 21, 3–98. (http://archive.org/details/zitteliana212319972002baye)

  • Baron-Szabo, R. C. (1998). A new coral fauna from the Campanian of northern Spain (Torallola Village, Prov. Lleida). Geologisch-Paläontologische Mitteilungen Innsbruck, 23, 127–191.

    Google Scholar 

  • Baron-Szabo, R. C. (1999). Taxonomy of Upper Cretaceous scleractinian corals of the Gosau Group (Weissenbachalm, Steiermark, Austria). Abhandlungen Der Geologischen Bundesanstalt, 56, 441–464.

    Google Scholar 

  • Baron-Szabo, R. C. (2000). Late Campanian-Maastrichtian corals from the United Arab Emirates-Oman border region. Bulletin of the Natural History Museum (geology Series), 56, 91–131.

    Google Scholar 

  • Baron-Szabo, R. C. (2001). Corals of the Theresienstein reef (Upper Turonian-Coniacian, Salzburg, Austria). Bulletin of the Biological Society of Washington, 10, 257–268.

    Google Scholar 

  • Baron-Szabo, R.C. (2002). Scleractinian corals of the Cretaceous. A compilation of Cretaceous forms with descriptions, illustrations and remarks on their taxonomic position. Baron–Szabo (privately published), Knoxville. 539 pp., pls. 1–142, text–figs. 1–86.

  • Baron-Szabo, R. C. (2003). Taxonomie und Ontogenie von Korallen der ostalpinen Oberkreide (Hochmoos– und Grabenbachschichten Gosau Gruppe Santon). Jahrbuch der Geologischen Bundesanstalt Wien, 143(2), 107–201. http://www.landesmuseum.at/datenbanken/digilit/?litnr=34374.

  • Baron-Szabo, R. C. (2006). Corals of the K/T-boundary. Part 1, Scleractinian corals of the Suborders Astrocoeniina, Faviina, Rhipidogyrina, and Amphiastraeina. Journal of Systematic Palaeontology, London, 4, 1–108.

    Article  Google Scholar 

  • Baron-Szabo, R.C. (2008). Corals of the K/T–boundary: Scleractinian corals of the suborders Dendrophylliina, Caryophylliina, Fungiina, Microsolenina, and Stylinina. Zootaxa, 1952, 1–244. http://www.mapress.com/zootaxa/list/2008/zt01952.html

  • Baron-Szabo, R. C. (2014). Scleractinian corals from the Cretaceous of the Alps and Northern Dinarides with remarks on related taxa. Abhandlungen Der Geologischen Bundesanstalt, 68, 1–287. pls. 1–88, text–figs. 1–22.

    Google Scholar 

  • Baron-Szabo, R. C. (2016). New taxonomic, stratigraphic, and geographic information on the genus Faksephyllia Floris, 1972 (Scleractinia; Caryophylliidae); first records from the Oligocene of Austria, Germany, and Italy. Zootaxa, 4154, 526–540.

    Article  Google Scholar 

  • Baron-Szabo, R. C. (2018a). Scleractinian corals from the upper Aptian-Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland) The Albian. Jahrbuch Der Geologischen Bundesanstalt Wien, 157(1–4), 241–260. 2 pls. (for 2017).

    Google Scholar 

  • Baron-Szabo, R. C. (2018b). Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages. Zootaxa, 4383, 1–98. 12 pls.

    Article  Google Scholar 

  • Baron-Szabo, R.C. (2021a). Systematic Descriptions of the Scleractinia Family Negoporitidae. In: Selden, P.A. (Ed.), Treatise on Invertebrate Paleontology, Part F, Revised, Volume 2, Chapter 15, Treatise Online no. 144, 1‒6, 4 figs. KU Paleontological Institute, The University of Kansas, Kansas.

  • Baron-Szabo, R. C. (2021b). Upper Barremian-lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland). Zootaxa, 4960(1), 1–199.

    Article  Google Scholar 

  • Baron-Szabo, R. C. (2021c). Scleractinian corals of the Albian (uppermost Lower Cretaceous)—overview, revision, evaluation. Proceedings of the Biological Society of Washington, 134(1), 363–406. https://doi.org/10.2988/0006-324X-134.1.363. 8 Appendices (74 pp.).

    Article  Google Scholar 

  • Baron–Szabo, R.C. & Cairns, S.D. (2019). Systematic Descriptions of the Scleractinia Family Dendrophylliidae. In: Selden, P.A. (Ed.), Treatise on Invertebrate Paleontology, Part F, Revised, Volume 2, Chapter 14, Treatise Online, 119. KU Paleontological Institute, The University of Kansas, Kansas, pp. 1–32.

  • Baron-Szabo, R.C., Darrell, J.G. & Rosen, B.R. (2010). 3. Corals. In: Young, J.R., Gale, A.S., Knight, R.I. & Smith, A.B. (Eds.), Fossils of the Gault Clay—Field Guide to Fossils. The Palaeontological Association, London, 12, 28–32.

  • Baron-Szabo, R. C., & Sanders, D. (2020). Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria. Bollettino Della Società Paleontologica Italiana, 59(3), 319–336.

    Google Scholar 

  • Baron-Szabo, R. C., Schafhauser, A., Götz, S., & Stinnesbeck, W. (2006). Scleractinian corals from the Maastrichtian of Mexico (State San Luis Potosí; Cardenas Formation). Journal of Paleontology, 80(6), 1033–1046.

    Article  Google Scholar 

  • Bataller, J. (1937). La fauna corallina del Cretàcic de Catalunya i regions limítrofes. Arxius De L’escola Superior D’agricultura (n.s.), 3, 1–299.

    Google Scholar 

  • Bavi, O. A., Adabi, M. H., Sadeghi, A., & Amir, B. H. (2016). Diagenetic processes of the Ghorban Member of the Sachun Formation in type section (Tang-e-Mehdi, Southern flank of the Ghareh Anticline south east Shiraz). Journal of Stratigraphy and Sedimentology Researches, 63(2), 1–22. in Persian.

    Google Scholar 

  • Beauvais, L. (1964). Étude stratigraphique et paléontologique des formations à madréporaires du Jurassique supérieur du Jura et de l’Est du Bassin de Paris. Mémoire De La Société Géologique De France, 100, 1–287. pls. 1–38.

    Google Scholar 

  • Beauvais, L. & Beauvais, M. (1975). Une nouvelle famille dans le sous-ordre des Stylinida Alloiteau, les Agatheliidae nov. fam. (Madréporaires mésozoïques). Bulletin de la Société Géologique de France, 7e série, 17, 576–581, Paris. (in French).

  • Beauvais, M. (1982). Révision systématique des Madréporaires des couches de Gosau (Crétacé supérieur, Autriche). Travaux du Laboratoire de Paléontologie des Invertébrés, 1, 1–256; 2, 1–278; 3, 1–177; 4 (atlas), pls. 1–59; 5 (atlas), figs. 1–131.

  • Benedetti, A., Consorti, L., Schlagintweit, F., & Rashidi, K. (2021). Ornatorotalia pila n. sp. from the late Paleocene of Iran: ecological, evolutionary and paleobiogeographic inferences. Historical Biology. https://doi.org/10.1080/08912963.2020.1741572

    Article  Google Scholar 

  • Bernard, H. (1903). The Family Poritidae I.—The Genus Goniopora. Catalogue of the Madreporarian Corals in the British Museum (Natural History) 4, 1–206, pls. 1–14.

  • Bernecker, M., & Weidlich, O. (1990). The Danian (Paleocene) coral limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds. Facies, 22, 103–138.

    Article  Google Scholar 

  • Bernecker, M., & Weidlich, O. (2005). Azooxanthellate corals in the Late Maastrichtian-Early Paleocene of the Danish basin, bryozoan and coral mounds in a boreal shelf setting. In A. Freiwald & J. M. Roberts (Eds.), Cold-water Corals and Ecosystems (pp. 3–25). Berlin: Springer.

    Chapter  Google Scholar 

  • Berryhill, H. L., Jr., Briggs, R. P., & Glover, L. (1960). Stratigraphy, sedimentation, and structure of Late Cretaceous rocks in eastern Puerto Rico—Preliminary report. AAPG Bulletin, 44, 137–155.

    Google Scholar 

  • Blainville de, H.-M.D. (1830). Zoophytes. Dictionnaire des Sciences Naturelles, 60, 1–631. http://books.google.com/books?id=CXFRAAAAcAAJ.

  • Bosellini, F. R. (1999). The scleractinian genus Hydnophora (revision of Tertiary species). Paläontologische Zeitschrift, 73, 217–240.

    Article  Google Scholar 

  • Bosellini, F. R., & Russo, A. (1995). The scleractinian genus Actinacis: systematic revision and stratigraphic record of the Tertiary species with special regard to Italian occurrences. Rivista Italiana Di Paleontologia e Stratigrafia, 101, 215–230.

    Google Scholar 

  • Bosellini, F. R., & Trevisani, E. (1992). Coral facies and cyclicity in the Castelgomberto Limestone (Early Oligocene, Eastern Lessini Mountains, Northern Italy). Rivista Italiana Di Paleontologia e Stratigrafia, 98, 339–352.

    Google Scholar 

  • Bryan, J. R. (1991). A Paleocene coral–algal–sponge reef from southwestern Alabama and the ecology of Early Tertiary reefs. Lethaia, 24, 423–438.

    Article  Google Scholar 

  • Bryan, J. R., Carter, B. D., Fluegeman, R. H., Jr., Krumm, D. K., & Stemann, T. A. (1997). The salt lake mountain of Alabama. Tulane Studies in Geology and Paleontology, 30(1), 1–60.

    Google Scholar 

  • Budd, A., Stemann, T. A., & Stewart, R. H. (1992). Eocene Caribbean reef corals, a unique fauna from the Gatuncillo Formation of Panama. Journal of Paleontology, 66, 570–594.

    Article  Google Scholar 

  • Cairns, S. D. (1997). A generic revision and phylogenetic analysis of the Turbinoliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 591, 55.

    Google Scholar 

  • Cairns, S. D. (2001). A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 615, 1–75.

    Article  Google Scholar 

  • Chevalier, J.-P. (1956). Les polypiers anthozoaires du Stampien de Gaas (Landes) [Stampian corals from Gaas (Landes)]. Bulletin De La Societe D’histoire Naturelle De Toulouse, 90, 375–410.

    Google Scholar 

  • Chevalier, J.-P. (1962). Recherches sur les Madreporaires et les formations recifales Miocenes de la Mediterranee occidentale [Miocene corals and reefs from the western Mediterranean]. Memoires De La Societe Geologique De France, 93, 1–562. in French.

    Google Scholar 

  • Consorti, L., & Rashidi, K. (2018). A new evidence of passing the Maastrichtian-Paleocene boundary by larger benthic foraminifers: The case of Elazigina from the Maastrichtian Tarbur Formation of Iran. Acta Palaeontologica Polonica, 63(3), 595–605.

    Google Scholar 

  • Consorti, L., Schlagintweit, F., & Rashidi, K. (2020). Three shell types in Mardinella daviesi indicate the evolution of a paratrimorphic life cycle among late Paleocene soritid benthic foraminifera. Acta Palaeontologica Polonica, 65(3), 641–648.

    Google Scholar 

  • Dana, J.D. (1846). Zoophytes. In: United States Exploring Expedition during the years 1838–1842 under the command of Charles Wilkes, U.S.N., Vol. 7, Lea & Blanchard, Philadelphia, pp. 1–740.

  • Deloffre, R., Poignant, A. F., & Teherani, K. (1977). Algues calcaires de l’ Albo-Aptien au Paléocene de l’ Iran central. Bulletin Des Centres De Recherches Exploration-Production Elf-Aquitaine, 1, 29–57.

    Google Scholar 

  • Drobne, K., Ogorelec, B., Pleničar, M., Zucchi-Stolfa, M. L., & Turnšek, D. (1988). Maastrichtian, Danian and Thanetian beds in Dolenja Vas (NW Dinarides, Yugoslavia), microfacies foraminifers, rudists and corals. Razprave Slovenska Akademija Znanosti in Umetnosti, Razred Za Naravoslovne Vede, 29(6), 147–224.

    Google Scholar 

  • Duncan, P. M. (1863). On the fossil corals of the West Indian Islands. Quarterly Journal of the Geological Society of London, 19, 406–458. pls 13–16.

    Article  Google Scholar 

  • Duncan, P. M. (1864). A description of, and remarks upon, some fossil corals from Sinde. Annals and Magazine of Natural History, 13(3), 295–307.

    Article  Google Scholar 

  • Duncan, P. M. (1866). A monograph of the British fossil corals (2nd series; Part1): Corals from the Tertiary Formations. Palaeontological Society, London, i–iii and 1–66, pls I–X.

  • Duncan, P. M. (1867). On the genera Heterophyllia, Battersbyia, Palaeocyclus, and Asterosmilia; the anatomy of their species, and their position in the classification of the sclerodermic Zoantharia. Philosophical Transactions of the Royal Society of London 157, 643–656. (http://www.jstor.org/stable/108985)

  • Duncan, P. M. (1880). A monograph of the fossil corals and Alcyonaria of Sind. Memoirs of the Geological Survey of India, Palaeontologia Indica, Series, 14(1), 1–110. pls 1–28.

    Google Scholar 

  • Duncan, P. M. (1884). A revision of the families and genera of the sclerodermic Zoantharia Edwards et Haime, or Madreporaria (M. Rugosa excepted). Journal of the Linnean Society of London, Zoology, 18(104–105), 1–204. https://doi.org/10.1111/j.1096-3642.1884.tb02013.x

    Article  Google Scholar 

  • Eftekhar Nezad, J., Alavi‒Naini, M., Lotfi, M., Aghanabati, A. & Griffis, R. J. (1990). Geological map of Bandan, quaderangel map 1: 100000 series sheet 8152, Geological Survey of Iran.

  • Eliášová, H. (1974). Hexacorallia et Octocorallia du Paléogène des Carpates externes. Sbornik Geologickych Ved Paleontologie, 16, 105–156.

    Google Scholar 

  • Eliášová, H. (1989). Les Madreporaires du Cretace superieur de la Montagne de Beskydy (Tchecoslovaquie) [Upper Cretaceous Scleractinia of the Beskid Mountains (Czechoslovakia)]. Zapadne Karpaty, Seria Paleontologia, 13, 81–107. (in French).

    Google Scholar 

  • Eliášová, H. (1992). Archaeocoeniina, Stylinina, Astraeoina, Meandriina et Siderastraeidae (Scléractiniaires) du Crétacé de Bohême (Cénomanien supérieur–Turonien inférieur; Turonien supérieur, Tchécoslovaquie). Věstník Českého Geologického Ústavu, 67(6), 399–416. 8 pls. in French.

    Google Scholar 

  • Eliášová, H. (1997). Coraux crétacés de Bohême (Cénomanien supérieur; Turonien inférieur–Coniacien inférieur). République Tchèque. Věstnik Ceskeho Geologickeho Ústavu, 72(3), 245–265. Praha, in French.

    Google Scholar 

  • Felix, J. (1900). Über zwei neue Korallengattungen aus den ostalpinen Kreideschichten. Sitzungsberichte Der Naturforschenden Gesellschaft Zu Leipzig, 1900, 37–40.

    Google Scholar 

  • Felix, J. (1903). Studien über die korallenführenden Schichten der oberen Kreideformation in den Alpen und in den Mediterrangebieten. Palaeontographica, 49, 163–359. (http://archive.org/details/palaeontographic49pala)

  • Felix, J. (1925). Fossilium Catalogus. Animalia, Pars 28. Anthozoa eocaenica et oligocaenica. Junk, Berlin, 1–296

  • Filkorn, H. F., Avendaño-Gil, J., Coutiño-José, M. A., & Vega-Vera, F. J. (2005). Corals from the Upper Cretaceous (Maastrichtian) Ocozocoautla Formation, Chiapas. Mexico. Revista Mexicana De Ciencias Geológicas, 22(1), 115–128.

    Google Scholar 

  • Filkorn, H. F., & Pantoja-Alor, J. (2009). Cretaceous corals from the Huetamo region, Michoacan and Guerrero, southwestern Mexico. Universidad Nacional Autonoma De Mexico, Instituto De Geologia, Boletin, 116, 1–169.

    Google Scholar 

  • Floris, S. (1972). Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nûgssuaq, West Greenland. Muséum De Minéralogie Et De Géologie De L’université De Copenhague, Communications Paléontologiques, 183, 1–132. 8 pls.

    Google Scholar 

  • Foster, A. B. (1986). Neogene paleontology in the northern Dominican Republic. 3. The family Poritidae (Anthozoa, Scleractinia). Bulletins of American Paleontology, 90, 43–123.

    Google Scholar 

  • Fromentel, E. de (1858–61). Introduction à l´étude des Polypiers fossiles. Mémoires de a Société d’Émululation du Département du Doubs 5, 1–357.

  • Fromentel, E. de (1860). Polypiers in Martin, J. (ed.) Paléontologie stratigraphique de l’Infralias du départments de la Côte d’Or suive d’un aperçu paléontologique sur le même assises dans le Rhône, l’Ardèche et l’Isère. Mémoires de la Société Géologique de France (2), 7, 1–100.

  • Frost, S. H. (1981). Oligocene reef coral biofacies of the Vicentin, northeast Italy. In Toomey D.F. (ed.), European fossil reef models. Society of Economic Paleontologists and Mineralogists, Special Publication, 30, 483–539.

  • Frost, S. H., & Langenheim, R. L. (1974). Cenozoic Reef Biofacies (p. 388). Dekalb: Northern Illinois Press.

    Google Scholar 

  • Gameil, M. (2005). Palaeoecological implications of Upper Cretaceous solitary corals, United Arab Emirates/Oman Borders. Revue De Paleobiologie, 24(2), 515–532.

    Google Scholar 

  • Géczy, B. (1954). Cyclolites (Anth.) tanulmányok [Studien über Cycloliten (Anth.)].—Geologica Hungarica: Series Palaeontologica, 24, 77–158, Budapest.

  • Gerth, H. (1933). Neue Beiträge zur Kenntnis der Korallenfauna des Tertiärs von Java. I: Die Korallen des Eocen und des älteren Neogen [The Tertiary coral fauna of Java. I: Eocene and Lower Neogene corals]. Wetenschappelijke Mededeelingen, 25, 1–45.

    Google Scholar 

  • Gill, G. A., & Russo, A. (1973). Présence d’une structure septale de type “Montlivaltide” chez Trochosmilia, Madréporaire Éocène. Annales De Paléontologie (invertébrés), 59, 1–61.

    Google Scholar 

  • Götz, S. (2003). Biotic interaction and synecology in a Late Cretaceous coral–rudist biostrome of southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 125–138.

    Article  Google Scholar 

  • Goldfuss, G. A. (1826–1829). Petrefacta Germaniae. Volumes 1–2. Arnz & Co., Düsseldorf, pp. 1–164. (http://sdrv.ms/WzHwEL)

  • Gray, J. E. (1840). South rooms of the north gallery. Synopsis of the Contents of the British Museum, 41, 54–84.

    Google Scholar 

  • Gray, J. E. (1842). In Agassiz, L. J. R (ed.) Nomenclator zoologicus: continens nomina systematica generum animalium tam viventum quam fossilium, fasc. Volume 5, Sent et Grassmann, Soloduri, 1842–1847. Pp. 30.

  • Gray, J. E. (1847). An outline of an arrangement of stony corals. Annals and Magazine of Natural History, 19, 20–128. (http://books.google.com/books?id=uvAyAQAAMAAJ)

  • Gregory, W. (1900). On the geology and fossil corals and echinids of Somaliland. Quarterly Journal of the Geological Society of London, 56, 26–45. pls 2.

    Article  Google Scholar 

  • Habibimood, S. H., Gorgij, M. N., Khosrotehrani, K. H., Saidi, A., & Agahanabati, A. (2016). Facies analyses and sedimentary environment of Upper Cretaceous carbonate deposits in North Bandan (Daghal section). Scientific Quarterly Journal Geosicence, 25(99), 39–46. (in Persian).

    Google Scholar 

  • Hackemesser, M. (1936). Eine kretazische Korallenfauna aus Mittel-Griechenland und ihre paläobiologischen Beziehungen. Palaeontographica, 84, 1–97.

    Google Scholar 

  • Hernández Morales, H., & Löser, H. (2018). Revision of the family Helioporidae (Helioporacea, Anthozoa; Cretaceous–Extant). Neues Jahrbuch Für Geologie Und Paläontologie, Abhandlungen, 287(3), 351–363.

    Article  Google Scholar 

  • Hladil, J., Otava, J., & Galle, A. (1991). Oligocene Carbonate Buildups of the Sirt Basin, Libya. Geology of Libya, 4, 1401–1420.

    Google Scholar 

  • Hottinger, L. (2009). The Paleocene and earliest Eocene foraminiferal family Miscellaneidae: neither nummulitids nor rotaliids. Carnets de Géologie/Notebooks on Geology—Article 2009/06.

  • Hottinger, L. (2014). Paleogene larger rotaliid foraminifera from the Western and Central Neotethys (p. 196). Heidelberg: Springer.

    Book  Google Scholar 

  • Howe, H. J. (1960). Turbinolia rosetta, a new coral species from the Paleocene of Alabama. Journal of Paleontology, 34(5), 1020–1022.

    Google Scholar 

  • James, G. A., & Wynd, J. G. (1965). Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 49(12), 2218–2232.

    Google Scholar 

  • Jell, J. S., Cook, A. G., & Jell, P. A. (2011). Australian Cretaceous Cnidaria and Porifera. Alcheringa, 35(2), 241–284.

    Article  Google Scholar 

  • Johnson, K. G., Sanchez-Villagra, M. R., & Aguilera, O. A. (2009). The Oligocene-Miocene Transition on Coral Reefs in the Falcon Basin (NM Venezuela). Palaios, 24, 59–69.

    Article  Google Scholar 

  • Kahsnitz, M. M., Zhang, Q., & Willems, H. (2016). Stratigraphic distribution of the larger benthic foraminifera Lockhartia in south Tibet (China). Journ. Foram. Res., 46, 34–47.

    Article  Google Scholar 

  • Khazaei, A. R., Yazdi, M., & Löser, H. (2009). Paleontology and paleobiogeography of Scleractinian corals in rudistbearing carbonate units of Tarbur Formation, Semirom section. Sedimentary Facies, 2(1), 1–16. in Persian.

    Google Scholar 

  • Khosrow-Tehrani, Kh. (1987). Late Maestrichtien and Paleocene deposits in south—southeast of Yazd area—central Iran. Journal of Science (university of Tehran), 16, 41–48.

    Google Scholar 

  • Kiessling, W., & Baron-Szabo, R. C. (2004). Extinction and recovery patterns of scleractinian corals at the K/T-boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 195–223.

    Article  Google Scholar 

  • Klaus, J. S., & Budd, A. F. (2003). Comparison of Caribbean coral reef communities before and after Plio-Pleistocene faunal turnover: analyses of two Dominican Republic reef sequences. Palaios, 18(1), 3–21.

    Article  Google Scholar 

  • Koby, F. (1889). Monographie des polypiers jurassiques de la Suisse (9). Mémoires De La Société Paléontologique Suisse (abhandlungen Der Schweizerischen Paläontologischen GeselIschaft), 16, 457–582. pls. 121–130.

    Google Scholar 

  • Kühn, O. (1933). Das Becken von Isfahan-Saidabad und seine Altmiocäne Korallenfauna. Palaeontographica, Serie A, 79, 143–221.

    Google Scholar 

  • Kuzmicheva, E. I. (1987). [Upper Cretaceous and Paleogene corals of the USSR.] Verkhnenelovye paleogenovye korally SSSR. Nauka, Moskva, 187 pp. [in Russian].

  • Lalor, A. M. C., & Távora, V. A. (2006). Novos elementos da coralinofauna da Formação Pirabas (Mioceno inferior), estado do Pará [Coralinofaune of the Pirabas Formation (Lower Miocene), State of Para: new Taxa]. Geociencias, 25(2), 187–195.

    Google Scholar 

  • Lamarck, J. B. P. de. (1816). Histoire naturelle des animaux sans vertèbres (p. 568). Paris: Verdière.

    Google Scholar 

  • Lauridsen, B. W. & Bjerager, M. (2014). Danian cold-water corals from the Baunekule facies, Faxe Formation, Denmark: a rare taphonomic window of a coral mound flank habitat. Lethaia, 20 pp. https://doi.org/10.1111/let.12060.

  • Leloux, J. (1999). Numerical distribution of Santonian to Danian corals (Scleractinia, Octocorallia) of southern Limburg, The Netherlands. Geologie En Mijnbouw, 78, 191–195.

    Article  Google Scholar 

  • Leymerie, A. (1846). Statistique géologique et minéralogique du département de I'Aube, Atlas. Laloy, Troyes, pp. 675.

  • Linnaeus, C von (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Volume 1, 10th edition, Holmiae, Stockholm, pp 824.

  • Löser, H., Heinrich, M. & Schuster, U. (2019). Corals from Rußbach and Gosau (Coniacian-Santonian; Austria). English abridged version. 117 pp., 101 figs.; Dresden (CPress Verlag).

  • Lyell, C. (1837). On the Cretaceous and Tertiary Strata of the Danish Islands of Seeland and Möen. Transactions of the Geological Society, London, Series, 2(5), 243–257.

    Article  Google Scholar 

  • Maccagno, A. M. (1942). Zoantari maestrichtiani della Tripolitania. Reale Accademia Italiana. Rendiconto Della Classe Di Scienze Fisiche, Matematiche e Naturali, 7(3), 786–796.

    Google Scholar 

  • Majidifard, M. R. & Vaziri, S. H. (2000). Geological map of Bahadoran (scale of 1:100.000) with an explanatory text. Report number 6952. Geological Survey of Iran, Tehran.

  • McCall, J., Rosen, B. R., & Darrell, J. (1994). Carbonate deposition in accretionary prism settings: early Miocene coral limestones and corals of the Makran Mountain Range in southern Iran. Facies, 31, 141–178.

    Article  Google Scholar 

  • Metwally, M. H. M. (1996). Maastrichtian scleractinian corals from the western flank of the Oman Mountains, U.A.E. and their paleoecological significance. Neues Jahrbuch Für Geologie Und Paläontologie, Monatshefte, 1996, 375–388.

    Article  Google Scholar 

  • Michelin, H. (1844). Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France. Vol. 4, Bertrand, Paris, pp. 105–144.

  • Michelin, H. (1846). Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France. Vol. 6, Bertrand, Paris, pp. 185–248.

  • Michelin, H. (1847). Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France. Vol. 7, Bertrand, Paris, pp. 249–328.

  • Milne Edwards, H., & Haime, J. (1848a). Observations sur les polypiers de la famille des astréides. Comptes Rendus De L’académie Des Sciences, 27, 465–469.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1848b). Note sur la classification de la deuxième tribu de la famille des astréides. Comptes Rendus De L’académie Des Sciences, 27, 490–497.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1848c). Recherches sur les polypiers (2). Monographie des turbinolides. Annales Des Sciences Naturelles, Troisième Série, Zoologie, 9, 211–344. Pls. 7–10.

    Google Scholar 

  • Milne Edwards, H., & Jules, J. (1848d). Recherches sur les polypiers (3). Monographie des Eupsammides. Annales Des Sciences Naturelles, Troisième Série, Zoologie, 10, 65–114. pl. 1.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1849a). Recherches sur les polypiers. Quatrième mémoire. Monographie des astréides (2) Tribu II. Astréens (Astreinae). Annales Des Sciences Naturelles, Troisième Série, Zoologie, 11, 233–312.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1849b). Recherches sur les polypiers. Quatrième mémoire. Monographie des astréides (2). Astréens (4–5). Annales Des Sciences Naturelles, Troisième Série, Zoologie, 12, 95–197.

    Google Scholar 

  • Milne Edwards, H. & Haime, J. (1850). A monograph of the British fossil corals (1). Tertiary and Cretaceous. Monographs of the Palaeontographical Society, 3, i–lxxxv, 1–71, pls. 1–11.

  • Milne Edwards, H., & Haime, J. (1851). Monographie des polypiers fossiles des terrains palæozoïques, précédée d’un tableau général de la classification des polypes. Archives Du Muséum D’histoire Naturelle, 5, 1–502.

    Google Scholar 

  • Milne Edwards, H. & Haime, J. (1857). Histoire naturelle des Coralliaires ou polypes proprement dits. Volumes 1 and 2. Librairie Encyclopédique de Roret, Paris, 633 pp. and atlas. http://books.google.com/books?id=W48-AAAAcAAJ&source=gbs_navlinks_s

  • Mitchell, S. F. (2002). Palaeoecology of corals and rudists in mixed volcaniclastic–carbonate small-scale rhythms (Upper Cretaceous, Jamaica). Palaeogeography, Palaeoclimatology, Palaeoecology, 2927, 1–23.

    Google Scholar 

  • Morycowa, E. & Roniewicz, E. (1995). Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40, 361–385. (http://www.app.pan.pl/article/item/app40-361.html)

  • Moseley, H. N. (1876). Preliminary report to Professor Wyville Thomson, F.R.S., Director of the Civilian Scientific Staff, on the true corals dredged by the H.M.S. ‘Challenger' in deep water between the dates Dec. 30th, 1870, and August 31st, 1875. Proceedings of the Royal Society of London 24, 544–569. (http://rspl.royalsocietypublishing.org/content/24/164-170/544)

  • Nabavi, M. H. (1972). Geological map of Yazd, 1: 250.000. Map. No H9, Geological Survey of Iran, Tehran.

  • Nielsen, K. B. (1917). Heliopora incrustans nov. sp. with a Survey of the Octocorallia in the Deposits of the Danian in Denmark. Meddelelser Fra Dansk Geologisk Forening, 5(8), 1–13.

    Google Scholar 

  • Nomland, J. D. (1916). Corals from the Cretaceous and Tertiary of California and Oregon. Bulletin of the Department of Geological Sciences, University of California 9 (5): 59–76.

  • Oken, L. (1815). Lehrbuch der Naturgeschichte. Volume 3 (Zoologie 1), August Schmid & Comp., Jena, 842 pp., 40 pls.

  • Oppenheim, P. (1901). Ueber einige alttertiäre Faunen der österreichisch–ungarischen Monarchie. Beiträge Zur Paläontologie Und Geologie Österreich-Ungarns Und Des Orients, 13, 145–277.

    Google Scholar 

  • Oppenheim, P. (1914). Fauna und Alter des Konglomerats von Zdaunek bei Kremsier. Jahrbuch der kaiserlich–königlichen Geologischen Reichsanstalt 63, 695–710, 1 pl.

  • Oppenheim, P. (1930). Die Anthozoen der Gosauschichten in den Ostalpen (p. 604). Berlin-Lichterfelde: Oppenheim (privately published).

    Google Scholar 

  • d’Orbigny, A. (1849). Prodrôme de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés, Volume 1. Masson, Paris, 394 pp. http://archive.org/details/prodromedepalo01orbiuoft

  • d’Orbigny, A. (1850). Prodrôme de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés (Vol. 2), pp. 428. Paris: Masson.

    Google Scholar 

  • Pal, A. K., Chatterjee, A. K., Prakash, G., Thussu, J. L., & De, B. (1984). On the fossil corals (Anthozoa) from the Indus Flysch of Upper Indus Valley, Ladakh. Geological Survey of India Special Publication, 15, 55–66.

    Google Scholar 

  • Pallas, P. S. (1766). Elenchus Zoophytorum. Hague–Comitum, xvi and 28 and 415 pp.

  • Pignatti, J., Di Carlo, M., Benedetti, A., Bottino, C., Briguglio, A., Falconi, M., Matteucci, R., Perugini, G., & Ragusa, M. (2008). SBZ 2–6 Larger foraminiferal assemblages from the Apulian and Pre-Apulian domains. Atti del Civico Museo Di Storia Naturale Di trieste., 53, 131–146.

    Google Scholar 

  • Quenstedt, F. A. (1881). Petrefactenkunde Deutschlands (6). Röhren– und Sternkorallen. Volume 3, Fues, Leipzig, 913–1094.

  • Rashidi, K., & Schlagintweit, F. (2017). Cymopolia eochoristosporica Elliott, 1968 (green alga, Dasycladale) from the Upper Maastrichtian of the Tarbur Formation (SW Iran). Cretaceous Research, 82, 99–103.

    Article  Google Scholar 

  • Reig Oriol, J. M. (1992). Madreporarios Cretácicos de España y Francia (pp. 1–66). Barcelona: José M Reig Oriol.

    Google Scholar 

  • Reis, O. M. (1889). Die Korallen der Reiter Schichten. Geognostische Jahreshefte, 2, 91–162.

    Google Scholar 

  • Reuss, A.E. (1854). Beiträge zur Charakteristik der Kreideschichten in den Ostalpen, besonders im Gosauthale und am Wolfgangsee. Denkschriften der kaiserlichen Akademie der Wissenschaften, Mathematisch–Naturwissenschaftliche Classe, 7, 73–133. (http://archive.org/details/denkschriftender07kais)

  • Richards, Z. T., & Wallace, C. C. (2004). Acropora rongelapensis sp. nov., a new species of Acropora from the Marshall Islands (Scleractinia: Astrocoeniina: Acroporidae). Zootaxa, 590, 1–5.

    Article  Google Scholar 

  • Samuel, O., Borza, K. & Köhler, E. (1972). Microfauna and lithostratigraphy of the Paleogen and adjacent Cretaceous of the Middle Vah Valley (West Carpathian). Cesky Geologisky Ustav Dionyza, Bratislava, 246 pp.

  • Sanders, D. G., & Baron-Szabo, R. C. (1997). Coral-rudist bioconstructions in the Upper Cretaceous Haidach section (Northern Calcaerous Alps, Austria). Facies, 36, 69–90.

    Article  Google Scholar 

  • Santodomingo, N. (2014). Miocene reef-coral diversity of Indonesia: unlocking the murky origins of the Coral Triangle. Utrecht Studies in Earth Sciences, 63, 1–336.

    Google Scholar 

  • Schafhauser, A., Götz, S., Baron-Szabo, R. C., & Stinnesbeck, W. (2003). Depositional environment of coral–rudist associations in the Upper Cretaceous Cardenas Formation (central Mexico). Geologia Croatica, 56, 187–198.

    Article  Google Scholar 

  • Schlagintweit, F., & Rashidi, K. (2016). Some new and poorly known benthic foraminifera from late Maastrichtian shallow-water carbonates of the Zagros Zone, SW Iran. Acta Palaeontologica Romaniae, 12(1), 53–70.

    Google Scholar 

  • Schlagintweit, F., & Rashidi, K. (2017a). Zagrosella rigaudii n. gen., n. sp., a new biokovinoidean foraminifer from the Maastrichtian of Iran. Acta Palaeontologgica Romaniae, 13(1), 3–13.

    Google Scholar 

  • Schlagintweit, F., & Rashidi, K. (2017b). Persiacyclammina maastrichtiana n. gen., n. sp., a new larger benthic foraminifer from the Maastrichtian of Iran. Acta Palaeontologica Romaniae, 13(1), 15–23.

    Google Scholar 

  • Schlagintweit, F., & Rashidi, K. (2017c). Zagrosella rigaudii n. gen., n. sp., a new biokovinoidean foraminifer from the Maastrichtian of Iran. Acta Palaeontologica Romaniae, 13(1), 3–13.

    Google Scholar 

  • Schlagintweit, F., & Rashidi, K. (2022). The “Orbitolina Limestone” of central Iran: new data about microfacies, orbitolinid biostratigraphy, and palaeogeography. Facies, 68, 10. https://doi.org/10.1007/s10347-022-00647-2

    Article  Google Scholar 

  • Schlagintweit, F., Rashidi, K., & Babadipour, M. (2016a). Orbitolinid foraminifera from the Late Maastrichtian of the Tarbur Formation (Zagros Zone, SW Iran). Acta Palaeontologica Romaniae, 12(2), 29–46.

    Google Scholar 

  • Schlagintweit, F., Rashidi, K., & Barani, F. (2016b). First record of Gyroconulina columellifera Schroeder & Darmoian, 1977 (larger benthic foraminifera) from the Maastrichtian Tarbur Formation of SW Iran (Zagros Fold-Thrust-Belt). Geopersia, 6(2), 169–185.

    Google Scholar 

  • Schlagintweit, F., Rashidi, K., & Kivani, F. (2016c). On the occurrence of Salpingoporella pasmanica Radoičić, 2002, (Dasycladales) from the Late Maastrichtian of the Zagros Zone. SW Iran. Acta Palaeontologica Romaniae, 12(1), 33–42.

    Google Scholar 

  • Schlagintweit, F., Rashidi, K. & Kohkan, H. (2020). Coscinospira prima n. sp., a new peneroplid foraminifer from the Paleocene of Iran and its bearing on the phylogeny of the Peneroplidae. Journal of Mediterranean Earth Sciences, 12, 10.3304/JMES.2019.003.

  • Schlagintweit, F., Rashidi, K., Yarahmadzahi, H., Habibimood, S., Amirshahkarmi, M., Ahmadi, A., & Khokan, H. (2019). Dissocladella? chahtorshiana Rashidi & Schlagintweit n. sp., a new Dasycladale (Green algae) from the Paleocene of Iran. Acta Palaeontologica Romaniae, 15(2), 3–13.

    Article  Google Scholar 

  • Schuster, F., & Wielandt, U. (1999). Oligocene and Early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography. International Journal of Earth Sciences, 88(3), 571–581.

    Article  Google Scholar 

  • Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosequella, J., & Zakrevskaya, E. (1998). Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin Société Géologique France, 169, 281–299.

    Google Scholar 

  • Serra-Kiel, J., Vicedo, V., Razin, Ph., & Grélaud, C. (2016). Selandian-Thanetian larger foraminifera from the lower Jafnayn Formation in the Sayq area (eastern Oman mountains). Geologica Acta, 14, 315–333.

    Google Scholar 

  • Sirel E. (1998). Foraminiferal description and biostratigraphy of the Paleocene-lower Eocene shallow-water limestones and discussion on the Cretaceous-Tertiary boundary in Turkey. General Directorate of the mineral research and exploration, Ankara, Monograph series 2, pp. 117.

  • Sirel, E. (2012). Seven new larger benthic foraminiferal genera from the Paleocene of Turkey. Revue De Paléobiologie, 31, 267–301.

    Google Scholar 

  • Smith, A. B., Morris, N. J., Gale, A. S., & Rosen, B. R. (1995). Late Cretaceous (Maastrichtian) echinoid-mollusc-coral assemblages and palaeoenvironments from a Tethyan carbonate platform succession, northern Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 155–168.

    Article  Google Scholar 

  • Stemann T. A. (2004). Reef corals of the White Limestone Group of Jamaica. In Donovan S.K. (ed.), The Mid-Cainozoic White Limestone Group of Jamaica. Cainozoic Research, 3, 83‒107.

  • Steuber, T. (1999). Cretaceous rudists of Boeotia, Central Greece. Special Papers in Palaeontology, 61, 5–229.

    Google Scholar 

  • Stoliczka, F. (1873). Cretaceous fauna of southern India (series 8, parts 4–5). The corals or Anthozoa, with notes on the Sponges, Foraminifera, Arthrozoa and Spondylozoa. Memoirs of the Geological Survey of India. Palaeontologia Indica, Series IV, 4, 130–202.

    Google Scholar 

  • Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 23, 147–150.

    Article  Google Scholar 

  • Tchéchmédjiéva, V. (1986). Paléoécologie des Madréporaires du Crétacé supérieur dans le Srednogorié de l’Ouest (Bulgarie occidentale). Geologica Balcanica, 16, 55–81.

    Google Scholar 

  • Tirrul, R., Bell, I. R., Griffis, R. J., & Camp, V. E. (1983). The Sistan Suture Zone of eastern Iran. Geological Society of America Bulletin, 94, 134–150.

    Article  Google Scholar 

  • Tomes, R. F. (1883). On some new or imperfectly known Madreporaria from the Coral Rag and Portland Oolite of the counties of Wilts, Oxford, Cambridge, and York. Quarterly Journal of the Geological Society, 39, 555–565.

    Article  Google Scholar 

  • Turnšek, D. (1978). Solitary Senonian corals from Stranice and MT Medvednica (NW Yugoslavia). Razprave Slovenska Akademija Znanosti in Umetnosti, 4(21), 66–125.

    Google Scholar 

  • Turnšek, D. (1994). Upper Cretaceous reef building colonial corals of Gosau facies from Stranice near Slovenske Konjice (Slovenia). Razprave Slovenska Akademija Znanosti in Umetnosti, 4(35), 3–41.

    Google Scholar 

  • Turnšek, D., & Drobne, K. (1998). Paleocene corals from the northern Adriatic platform. Dela-Opera SAZU, 34, 129–154.

    Google Scholar 

  • Turnšek, D., LeMone, D.V. & Scott, R.W. (2003). Tethyan Albian corals, Cerro de Cristo Rey Uplift, Chihuahua and New Mexico. In: Scott, R.W. (Ed.) Cretaceous stratigraphy and paleoecology, Texas and Mexico: Bob F. Perkins Memorial Volume. Gulf Coast Section SEPM Foundation, Special Publications in Geology, 1, CD book, 147–185.

  • Turnšek, D., Pleničar, M. & Šribar, L. (1992). Lower Cretaceous fauna from Slovenski Vrh near Koevje (South Slovenia). Razprave Slovenska Akademija Znanosti in Umetnosti (4), 33, 205–257, Pls. 1–14, Ljubljana.

  • Vaughan, T. W. (1899). Some Cretaceous and Eocene corals from Jamaica. Bulletin of the Museum of Comparative Zoology, 34, 227–250. pls 36–41.

    Google Scholar 

  • Vaughan, T. W. (1919). Fossil corals from central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reefs. Smithsonian Institution Bulletin, 103, 189–524.

    Google Scholar 

  • Vaughan, T. W. (1920). Corals from the Cannonball Marine Member of the Lance Formation. United States Geological Survey Professional Papers, 128, 61–66. pl. 10.

    Google Scholar 

  • Vaughan, Y. W., Cooke, W., Condit, D. D., Ross, C. P., Woodring, W. P. & Calkins, F. C. (1921). A geological reconnaissance of the Dominican Republic. Geological Survey of the Dominican Republic Memoir 1, 324 pp.

  • Vaughan, T. W., & Wells, J. W. (1943). Revision of the suborders, families and genera of the Scleractinia. Geological Society of America, Special Paper, 44, 1–363. https://doi.org/10.1130/SPE44-p1

    Article  Google Scholar 

  • Vecsei, A., & Moussavian, E. (1997). Paleocene Reefs on the Maiella Platform Margin, Italy, an example of the effects of the Cretaceous/Tertiary boundary events on reefs and carbonate platforms. Facies, 36, 126–140.

    Article  Google Scholar 

  • Verrill, A. E. (1902). Notes on corals of the genus Acropora (Madrepora Lam.) with new descriptions and figures of types, and of several new species. Transactions of the Connecticut Academy of Arts and Sciences, 11, 207–266. pls. 36–36F.

    Google Scholar 

  • Wallace, C. C. (2008). New species and records from the Eocene of England and France support early diversification of the coral genus Acropora. Journal of Paleontology, 82, 313–328.

    Article  Google Scholar 

  • Wallace, C. C., Portell, R. W., & Muir, P. R. (2020). Lineages of Acropora (staghorn) corals in the Oligocene to Miocene of Florida and SW Georgia (USA). Bollettino Della Società Paleontologica Italiana, 59(3), 349–354.

    Google Scholar 

  • Wells, J. W. (1933). Corals of the Cretaceous of the Atlantic and Gulf Coastal Plains and Western Interior of the United States. Bulletins of American Paleontology, 18(67), 1–207. (http://archive.org/details/bulletinsofameri186467193133pale)

  • Wells, J. W. (1934a). Some fossil corals from the West Indies. Proceedings of the U.S. Natural Museum, Washington 83, 71–110.

  • Wells, J. W. (1934b). Eocene corals. Part I: From Cuba Part 2: A new species of Madracis from Texas. Bulletin of American Paleontology, 20(70B), 147–164.

    Google Scholar 

  • Wells, J. W. (1937). New genera of Mesozoic and Cenozoic corals. Journal of Paleontology, 11(1), 73–77.

    Google Scholar 

  • Wells, J. W. (1941). Upper Cretaceous corals from Cuba. Bulletins of American Paleontology, 26, 282–300. pls. 42–44.

    Google Scholar 

  • Wells, J. W. (1945). Part II–West Indian Eocene and Miocene corals. Geological Society of America, Memoirs, 9, 1–25.

    Article  Google Scholar 

  • Wells, J.W. (1956). Part F, Coelenterata. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. University of Kansas Press, Lawrence, Kansas, pp. F328–F444. http://sdrv.ms/WzVG94

  • White, C. H. (2013). Corals and climate change in the Cenozoic; a case study based on the staghorn coral Acropora. 476 pp., PhD thesis, Department of Earth Sciences Royal Holloway University of London.

  • Yabe, H. & Sugiyama, T. (1933). Notes on three new corals from Japan. Japanese Journal of Geology and Geography 11, 11–18. (http://sdrv.ms/RTEoQa)

  • Yabe, H., & Sugiyama, T. (1935). Stylocoeniella, a new coral genus allied to Stylocoenia and Astrocoenia. Japanese Journal of Geology and Geography, 12, 103–105. pl. 15.

    Google Scholar 

  • Zamagni, J., Košir, A., & Mutti, M. (2009). The first microbialite-coral mounds in the Cenozoic (Uppermost Paleocene) from the Northern Tethys (Slovenia): Environmentally-triggered phase shifts preceding the PETM? Palaeogeography, Palaeoclimatology, Palaeoecology, 274(1–2), 1–17.

    Article  Google Scholar 

  • Zanchi A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M., & Muttoni, G. (2009). The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran, and its bearing on the reconstruction of the history of the Eurasian margin. In: Brunet, M.F., Wilmsen M., Granath J.W. (eds.) South Caspian to Central Iran Basin. Geological Society London, Special Publications 312, 261‒286.

  • Zorlu, K., Inan, S., Gül, M., Inan, M., Kurt, M. A., & Alpaslan, M. (2011). Geological Evolution of the Ulukışla Basin (Late Cretaceous-Eocene) Central Anatolia, Turkey. Yerbilimleri, 32(2), 151–170.

    Google Scholar 

Download references

Acknowledgements

My thanks and gratitude go to Dennis Opresko (Knoxville, Tennessee) for his valuable suggestions on the manuscript, and, together with both Steve Cairns (Smithsonian Institution, Washington, DC, USA) and Bernard Lathuilière (Nancy, France), for many discussions on coral taxonomy. We would like to thank two anonymous reviewers for their most helpful comments. Type material and additional study material was made accessible to us by Jill Darrell (Natural History Museum, London, UK); Andreas Kroh, Alexander Lukeneder, Oleg Mandic, and Thomas Nichterl (all Naturhistorisches Museum, Vienna, Austria); Hans Egger (formerly Geologische Bundesanstalt, Wien; GBA, Vienna, Austria); Bernhard Hubmann (University of Graz, Austria); Karl Rauscher (University of Vienna, Austria); Georg Friebe (“Inatura”, Dornbirn, Austria); Sylvain Charbonnier and Christine Perrin (both Museum d’Histoire Naturelle de Paris, France); Winfried Werner and Martin Nose (both Bayerische Staatssammlung, Munich, Germany); and Dieter Korn (Naturhistorisches Museum Berlin, Germany). As a Research Associate of the Smithsonian Institution (SI) Washington, DC, USA, and an Honorary Researcher at the Research Institute Senckenberg, Frankfurt, Germany, one of us (RBS) would like to express her deep appreciation for the continuing support from these institutions.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Contributions

RBS wrote most of the manuscript. FS provided information regarding the stratigraphy and geology of the collecting sites. KR made available the newly described material and provided information regarding both the geography and paleogeography of the study sites. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosemarie C. Baron-Szabo.

Ethics declarations

Competing interests

We have no competing interests.

Additional information

Editorial handling: Michael Hautmann

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6, 7, 8, 9 and 10.

Table 6 Newly and previously (Khazaei, et al., 2009; Kühn, 1933) reported coral species from Iranian K/Pg-localities, characteristics of their skeletal elements, and their stratigraphic and geographic ranges
Table 7 Overview of the coral species previously described from the Paleocene (Shahr-e-Babak) and upper Maastrichtian of Iran (Tarbur Fm. at Neyriz and Semirom), and remarks on their taxonomic position
Table 8 Paleoenvironmental occurrences of the Iranian species
Table 9 Iranian coral genera (arranged according to family assignment [families are in alphabetical order]) and references used for information regarding genus concept
Table 10 List of newly described Iranian specimens, and both their taxonomic and stratigraphic assignments

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron-Szabo, R.C., Schlagintweit, F. & Rashidi, K. Coral fauna across the Cretaceous–Paleogene boundary at Zagros and Sistan Suture zones and Yazd Block of Iran. Swiss J Palaeontol 142, 7 (2023). https://doi.org/10.1186/s13358-023-00264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13358-023-00264-8

Keywords