Ausich, W. I. (1980). A model for niche differentiation in lower Mississippian crinoid communities. Journal of Paleontology,
54, 273–288.
Google Scholar
Ausich, W. I. (1984). Calceocrinids from the Early Silurian (Llandoverian) Brassfield Formation of southwestern Ohio. Journal of Paleontology,
58, 1167–1185.
Google Scholar
Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science,
216(4542), 173–174.
Article
Google Scholar
Ausich, W. I., Brett, C. E., Hess H., & Simms, M. J. (1999). Crinoid form and function. In H. Hess, W. I. Ausich, C. E. Brett & M. J. Simms (Eds.) Fossil Crinoids (pp 3–30). Cambridge: Cambridge University Press
Ausich, W. I., & Copper, P. (2010). Anticosti Island Crinoid Monograph. Palaeontographica Canadiana, 29, 157
Ausich, W. I., Kammer, T. W., & Baumiller, T. K. (1994). Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology,
20, 345–361.
Google Scholar
Barnes, C. R., & Bergström, S. M. (1988). Conodont biostratigraphy of the uppermost Ordovician and lowermost Silurian. British Museum of Natural History (Geology) Bulletin,
84, 325–343.
Google Scholar
Baumiller, T. K. (1993). Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology,
19, 304–321.
Google Scholar
Bergmann, C. (1847). Über die Verhältnisse der wärmeökonomie der Tiere zu ihrer Grösse. Göttinger Studien, 3, 595–708.
Google Scholar
Berry, W. B. N., & Boucot, A. J. (1973). Glacioeustatic control of Late Ordovician–Early Silurian platform sedimentation and faunal change. Bulletin of Geological Society of America, 84, 275–284.
Google Scholar
Bottjer, D. J., & Ausich, W. I. (1987). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology,
12, 400–420.
Google Scholar
Brenchley, P. J. (1989). The Late Ordovician Extinction. In S. K. Donovan (Ed.), Mass extinctions: processes and evidence (pp. 104–132). New York: Columbia University Press.
Brenchley, P. J., Carden, G. A. F., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., et al. (2003). High-resolution stable isotope stratigraphy of upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin,
115, 89–104.
Article
Google Scholar
Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. G. F., Meidla, T., et al. (1994). Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology,
22, 295–298.
Article
Google Scholar
Brower, J. C. (1978). Camerates. In R. C. Moore & C. Teichert (Eds.), Treatise on invertebrate paleontology, Part T Echinodermata 2 (1) (pp. T244–T263). Lawrence, Kansas: Geological Society of America and University of Kansas Press.
Brower, J. C. (2006). Ontogeny of the food-gathering system in Ordovician crinoids. Journal of Paleontology, 80, 430–446.
Google Scholar
Chen, X., Melchin, M. J., Fan, J. & Mitchell, C. E. (2003). Ashgillian graptolite fauna of the Yangtze region and the biogeographical distribution of diversity in the latest Ordovician. Bulletin de la Societe Geologique de France, 174, 141–148.
Google Scholar
Copper, P. (1986). Fransian/Famennian mass extinction and cold-water oceans. Geology,
14, 835–839.
Article
Google Scholar
Copper, P. (2001). Reefs during multiple crises towards the Ordovician–Silurian boundary: Anticosti Island, eastern Canada, and worldwide. Canadian Journal of Earth Sciences,
38, 153–171.
Article
Google Scholar
Copper, P., & Long, D. G. F. (1989). Stratigraphic revisions for a key Ordovician–Silurian boundary section, Anticosti Island, Canada. Newsletters on Stratigraphy,
21, 59–73.
Google Scholar
Copper, P., & Long, D. G. F. (1998). Field guide to carbonates and reefs of Anticosti Island, Québec. In A. Desrochers, P. Copper & D. Long (Eds.), Paleontology stratigraphy and sedimentology of lower to middle Paleozoic rocks of the Anticosti Basin: National Park of Mingon Islands and Anticosti Island (pp. 1–97). Geological Association of Canada B Mineralogical Association of Canada, Joint Meeting, Quebec, Field Trip B8 Guidebook.
Desrochers, A., Farley, C., Achab, A., Asselin, A., & Riva, J. F. (2010). A far-field record of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeography, Palaeoclimatology, Palaeoecology,
296, 248–263.
Article
Google Scholar
Donovan, S. K. (1989). The significance of the British Ordovician crinoid fauna. Modern Geology,
13, 243–255.
Google Scholar
Donovan, S. K. (1994). The Late Ordovician extinctions of crinoids in Britain. National Geographic Research and Exploration,
10, 72–79.
Google Scholar
Eckert, J. D. (1988). Late Ordovician extinction of North American and British crinoids. Lethaia,
21, 147–167.
Article
Google Scholar
Finnegan, S., & Droser, M. L. (2009). Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology,
34, 342–359.
Article
Google Scholar
Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobson, S. R., et al. (1999). Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology,
27, 215–218.
Article
Google Scholar
Ghienne, J. (2003). Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology,
189, 117–145.
Article
Google Scholar
Girard, C., & Renaud, S. (1996). Size variations in conodonts in response to the upper Kellwasser crisis (upper Devonian of the Montagne Noire, France). Comptes Rendus de l’Academie des Sciences Serie IIa,
323, 435–442.
Google Scholar
Grahn, Y., & Caputo, M. V. (1992). Early Silurian glaciations in Brazil. Palaeogeography, Palaeoclimatology, and Palaeoecology,
99, 9–15.
Article
Google Scholar
Grahn, Y., & Caputo, M. V. (1994). Late Ordovician evolution of the intracratonic basins in north-west Gondwana. Geologische Rundschau,
84, 665–668.
Article
Google Scholar
Hallam, A. & Wignall, P.B. (1997). Latest Ordovician extinctions: one disaster after another. In A. Hallam & P. B. Wignall (Eds.), Mass extinctions and their aftermath (pp. 39–57). New York: Oxford University Press.
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Harper, D. A. T., & Rong, J. (1995). Patterns of change in the brachiopod faunas through the Ordovician–Silurian interface. Modern Geology,
20, 83–100.
Google Scholar
Harries, P. J., & Knor, P. O. (2009). What does the ‘Lilliput Effect’ mean? Palaeogeography, Palaeoclimatology, Palaeoecology,
284, 4–10.
Article
Google Scholar
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., & Slingerland, R. L. (2004b). Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology,
210, 385–401.
Article
Google Scholar
Herrmann, A. D., Patzkowsky, M. E., & Pollard, D. (2004a). The impact of paleogeography pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology,
206, 59–74.
Article
Google Scholar
Hone, D. W. E., & Benton, M. J. (2005). The evolution of large size: how does Cope’s Rule work? Trends in Ecology and Evolution,
20, 4–7.
Article
Google Scholar
Hone, D. W. E., & Benton, M. J. (2007). Cope’s Rule in the Pterosauria and differing perceptions of Cope’s Rule at differing taxonomic levels. Journal of Evolutionary Biology,
20, 1164–1170.
Article
Google Scholar
Hone, D. W. E., Keesey, T. M., Pisani, D., & Purvis, A. (2005). Macroevolutionary trends in Dinosauria: Cope’s Rule. Journal of Evolutionary Biology,
18, 587–595.
Article
Google Scholar
Kaljo, D. (1996). Diachronous recovery patterns in Early Silurian corals, graptolites, and acritarchs. In M. B. Hart (Ed.), Biotic recovery after mass extinction events. Geological Society Special Publication 102, 127–133.
Kaljo, D., Hints, L., Männik, P., & Nolvak, J. (2008). The succession of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes. Estonian Journal of Earth Sciences,
57, 197–218.
Article
Google Scholar
Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S., & Sheehan, P. M. (1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology,
152, 173–187.
Article
Google Scholar
Lefebvre, V., Servais, T., François, L., & Averbuch, O. (2010). Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Paleogeography, Palaeoclimatology, Palaeoecology,
296, 310–319.
Article
Google Scholar
Lockwood, R. (2005). Body size, extinction events, and early Cenozoic record of veneroid bivalves; a new role for recoveries? Paleobiology,
31, 578–590.
Google Scholar
Long, D. G. F. (2007). Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence, sea level change, and orbital forcing in the Anticosti foreland basin, Quebec, Canada. NRC Canada,
44, 413–431.
Google Scholar
Long, D. G. F., & Copper, P. (1987). Stratigraphy of the Upper Ordovician Vauréal and Ellis Bay Formations, eastern Anticosti Island. Canadian Journal of Earth Sciences,
24, 1807–1820.
Article
Google Scholar
McKerrow, W. S. (1979). Ordovician and Silurian changes in sea level. Journal of the Geological Society,
136, 137–146.
Article
Google Scholar
Meire, S., & Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography,
30, 331–351.
Article
Google Scholar
Melott, A. L., & Thomas, B. C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology,
35, 311–320.
Article
Google Scholar
Ogg, J. G., Ogg, G., & Gradstein, F. M. (2008). The Concise Geologic Time Scale (p. 177). Cambridge: Cambridge University Press
Google Scholar
Peters, S. E. (2005). Geological constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences, USA,
102, 12326–12331.
Article
Google Scholar
Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology,
34, 104–116.
Article
Google Scholar
Rong, J.-Y., Boucot, A. J., Harper, D. A. T., Zahn, R.-B., & Newman, R. B. (2006). Global analysis of brachiopod faunas through the Ordovician and Silurian transition: reducing the role of the Lazarus effect. Canadian Journal of Earth Sciences,
43, 23–39.
Article
Google Scholar
Schmidt, D. N., Thierstein, H. R., & Bollman, J. (2004). The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology,
212, 159–180.
Google Scholar
Sepkoski, J. J., Jr. (1981). A factor analytic description of the marine fossil record. Paleobiology,
7, 36–53.
Google Scholar
Sheehan, P. M. (1973). The relation of Late Ordovician to Ordovician–Silurian changeover in North America brachiopod faunas. Lethaia,
6, 147–154.
Article
Google Scholar
Sheehan, P. M. (2001). The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences,
29, 331–364.
Article
Google Scholar
Stanley, S. M. (1973). An explanation for Cope’s rule. Evolution,
27, 1–26.
Article
Google Scholar
Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N., & Craig, J. (2000). Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology,
28, 967–970.
Article
Google Scholar
Twitchett, R. J. (2006). The palaeoclimatology, palaeoecology and paleoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology,
232, 190–213.
Article
Google Scholar
Twitchett, R. J. (2007). The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology,
252, 132–144.
Article
Google Scholar
Ubaghs G. (1978). Skeletal morphology of fossil crinoids. In R. C. Moore & C. Teichert (Eds.), Treatise on invertebrate paleontology, Part T Echinodermata 2 (1) (pp. T58–T216). Lawrence, Kansas: Geological Society of America and University of Kansas Press.
Urbanek, A. (1993). Biotic Crises in the history of Upper Silurian graptoloids: a paleobiological model. Historical Biology,
7, 29–50.
Article
Google Scholar
Van Valen, L. (1973). Pattern and the balance of nature. Evolutionary Theory,
1, 31–49.
Google Scholar
Wade, B. S., & Olsson, R. K. (2009). Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology,
284, 39–46.
Article
Google Scholar
Wade, B. S., & Peterson, P. N. (2008). Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Marine Micropaleontology,
68, 244–255.
Article
Google Scholar
Wade, B. S., & Twitchett, R. J. (2009). Extinction, dwarfing, and the Lilliput effect. Palaeogeography, Palaeoclimatology, Palaeoecology,
284, 1–3.
Article
Google Scholar
Waldron, J. W. F., Anderson, S. D., Carwood, P. A., Goodwin, L. B., Hall, J., Jamieson, R. A., et al. (1998). Evolution of the Appalachian Laurentian margin: Lithoprobe results in western Newfoundland. Canadian Journal of Earth Sciences,
35, 1271–1287.
Article
Google Scholar
Weihong, H., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., et al. (2006). Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,
252, 145–163.
Google Scholar
Young, S. A., Saltzman, M. R., Derochers, A., Ausich, W. I., & Kaljo, D. (2010). Did changes in atmospheric CO2 coincide with Late Ordovician glacial-interglacial cycles? Paleogeography, Palaeoclimatology, Palaeoecology,
296, 376–388.
Article
Google Scholar