Babaluk, J. A., & Campbell, J. S. (1987). Preliminary results of tetracycline labelling for validating annual growth increments in opercula of walleyes. North American Journal of Fisheries Management,
7(1), 138–141.
Article
Google Scholar
Bardach, J. E. (1955). The opercular bone of the yellow perch, Perca flavescens, as a tool for age and growth studies. Copeia,
1955(2), 107–109.
Article
Google Scholar
Beamish, R. J., & McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society,
112, 735–743.
Article
Google Scholar
Brennan, J. S., & Cailliet, G. M. (1989). Comparative age-dertermination techniques for white sturgeon in California. Transactions of the American Fisheries Society,
118, 296–310.
Article
Google Scholar
Brito, P. M., Meunier, F. J., & Gayet, M. (2000). The morphology and histology of the scales of the Cretaceous gar Obaichthys (Actinopterygii, Lepisosteidae): phylogenetic implications. Comptes Rendus de l’Academie des Sciences Paris, Sciences de la Terre et des Planètes/Earth and Planetary Sciences,
331, 823–829.
Google Scholar
Bruch, R. M., Campana, S. E., Davis-Foust, S. L., Hansen, M. J., & Janssen, J. (2009). Lake sturgeon age validation using bomb radiocarbon and known-age fish. Transactions of the American Fisheries Society,
138, 361–372.
Article
Google Scholar
Brusher, J. H., & Schull, J. (2009). Non-lethal age determination for juvenile goliath grouper Epinephelus itajara from southwest Florida. Endangered Species Research,
7, 205–212.
Article
Google Scholar
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology,
59, 197–242.
Article
Google Scholar
Campbell, J. S., & Babaluk, J. A. (1979). Age determination of walleye, Stizostedion vitreum
vitreum (Mitchill), based on the examination of eight different structures. Canadian Fisheries and Marine Service Technical Report,
849, iv+23.
Google Scholar
Casselman, J. M. (1987). Determination of age and growth. In A. H. Weatherley & H. S. Gill (Eds.), The biology of fish growth (pp. 209–242). London: Academic Press.
Google Scholar
Castanet, J., Francillon-Vieillot, H., Meunier, F. J., & de Ricqlès, A. (1993). Bone and individual aging. In B. K. Hall (Ed.), Bone (Vol. 7, pp. 245–283)., Bone growth-B Boca Raton: CRC Press.
Google Scholar
Coates, M. I. (1999). Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society of London. Series B––Biological Sciences,
354, 435–462.
Article
Google Scholar
Cochnauer, T. G., Lukens, J. R., & Partridge, F. E. (1985). Status of white sturgeon, Acipenser transmontanus, in Idaho. In F. Binkowski & S. Doroshov (Eds.), North American sturgeons: biology and aquaculture potential (pp. 127–133). Dordrecht: Dr W. Junk.
Google Scholar
Cooley, P. M., & Franzin, W. G. (1995). Image analysis of walleye (Stizostedion vitreum vitreum). Canadian Technical Report of Fisheries and Aquatic Sciences,
2055, iv+9.
Google Scholar
Dan, S. S. (1980). Age and growth in the catfish Tachysurus tenuispinis (Day). Indian Journal of Fisheries,
27, 220–235.
Google Scholar
Devries, D. R., & Frie, R. V. (1996). Determination of age and growth. In B. R. Murphy & D. W. Willis (Eds.), Fisheries techniques (2nd ed., pp. 483–512). Bethesda: American Fisheries Society.
Google Scholar
Donald, D. B., Babaluk, J. A., Craig, J. F., & Musker, W. A. (1992). Evaluation of the scale and operculum methods to determine age of adult goldeyes with special reference to a dominant year-class. Transactions of the American Fisheries Society,
121, 792–796.
Article
Google Scholar
Fowler, A. J. (2009). Age in years from otoliths of adult tropical fish. In B. S. Green, B. D. Mapstone, & G. C. G. A. Begg (Eds.), Tropical fish otoliths: information for assessment, management and ecology (pp. 55–92). Dordrecht: Springer.
Chapter
Google Scholar
Furrer, H. (2009). So kam der Fisch auf den Berg - Eine Broschüre über die Fossilfunde am Ducan. 2. aktualisierte Auflage. Bündner Naturmuseum Chur und Paläontologisches Institut und Museum, Universität Zürich.
Gardiner, B. G., Schaeffer, B., & Masserie, J. A. (2005). A review of the lower actinopterygian phylogeny. Zoological Journal of the Linnean Society,
144, 511–525.
Article
Google Scholar
Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The Resurrection of Holostei [American Society of Ichthyologists and Herpetologists Special Publication 6]. Supplementary Issue of Copeia,
10(2A), 1–871.
Google Scholar
Griffith, J. (1959). On the anatomy of two saurichthyid fishes, Saurichthys striolatus (Bronn) and S. curioni (Bellotti). Proceedings of the Zoological Society of London,
132, 587–606.
Article
Google Scholar
Griffith, J. (1962). The Triassic fish Saurichthys krambergeri Schlosser. Palaeontology,
5, 344–354.
Google Scholar
Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes. Biology, evolution, and ecology (2nd ed.). Chichester: Wiley.
Google Scholar
Jackson, N. D., Garvey, J. E., & Colombo, R. E. (2007). Comparing aging precision of calcified structures in shovelnose sturgeon. Journal of Applied Ichthyology,
23, 525–528.
Article
Google Scholar
Jatteau, P., Rochard, E., Lepage, M., & Gazeau, C. (2011). Age assessment in European sturgeon. In P. Williot, E. Rochard, N. Desse-Berset, F. Kirschbaum, & J. Gessner (Eds.), Biology and conservation of the European sturgeon Acipenser sturio L. 1758 (pp. 343–348). Berlin: Springer.
Chapter
Google Scholar
Khan, M. A., & Khan, S. (2009). Comparison of age estimates from scale, opercular bone, otolith, vertebrae and dorsal fin ray in Labeo rohita (Hamilton), Catla catla (Hamilton) and Channa marulius (Hamilton). Fisheries Research,
100, 255–259.
Article
Google Scholar
Kimmel, C. B., DeLaurier, A., Ullmann, B., Dowd, J., & McFadden, M. (2010). Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One,
5(3), e9475. doi:10.1371/journal.pone.0009475.
Article
Google Scholar
Le Cren, E. D. (1947). The determination of the age and growth of the perch (Perca fluviatilis) from the opercular bone. Journal of Animal Ecology,
16, 188–204.
Article
Google Scholar
Lou, D. C. (1992). Validation of annual growth bands in the otolith of tropical parrotfishes (Scarus schlegeli Bleeker). Journal of Fish Biology,
41, 775–790.
Article
Google Scholar
Ma, B., Xie, C., Huo, B., Yang, X., & Li, P. (2010). Age validation, and comparison of otolith, vertebra and opercular bone for estimating age of Schizothorax o’connori in the Yarlung Tsangpo River, Tibet. Environmental Biology of Fishes,
90, 159–169.
Article
Google Scholar
Maxwell, E. E., Furrer, H., & Sánchez-Villagra, M. R. (2013). Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes. Nature Communications,
4, 2570. doi:10.1038/ncomms3570.
Google Scholar
McConnell, W. J. (1952). The opercular bone as an indicator of age and growth of the carp, Cyprinus carpio Linnaeus. Transactions of the American Fisheries Society,
81, 138–149.
Article
Google Scholar
Meunier, F. J. (2011). The Osteichtyes, from the Paleozoic to the extant time, through histology and palaeohistology of bony tissues. Comptes Rendus Palevol,
10, 347–355.
Article
Google Scholar
Morales-Nin, B. (1989). Growth determination of tropical marine fishes by means of otolith interpretation and length frequency analysis. Aquatic Living Resources,
2, 241–253.
Article
Google Scholar
Mutter, R. J., Cartanyà, J., & Basaraba, A. U. (2008). New evidence of Saurichthys from the Lower Triassic with an evaluation of early saurichthyid diversity. In G. Arratia, H.-P. Schultze, & M. V. H. Wilson (Eds.), Mesozoic fishes 4––homology and phylogeny (pp. 103–127). München: Dr. Friedrich Pfeil.
Google Scholar
Near, T. J., Dornburg, A., Tokita, M., Suzuki, D., Brandley, M. C., & Friedman, M. (2013). Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fish. Evolution,
68, 1014–1026.
Article
Google Scholar
Ørvig, T. (1978). Microstructure and growth of the dermal skeleton in fossil actinopterygian fishes: Birgeria and Scanilepis. Zoologica Scripta,
7, 33–56.
Article
Google Scholar
Panfili, J., de Pontual, H., Troadec, H., & Wright, P. J. (Eds.) (2002). Manual of fish sclerochronology. Brest: Ifremer-lRD coedition.
Patterson, C. (1977). Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In S. M. Andrews, R. S. Miles, & A. D. Walker (Eds.), Problems in vertebrate evolution (pp. 77–121)., Linnean Society Symposium Series No. 4 London: Academic Press.
Google Scholar
Perry, R. C., & Casselman, J. M. (2012). Comparisons of precision and bias with two age interpretation techniques for opercular bones of longnose sucker, a long-lived northern fish. North American Journal of Fisheries Management,
32, 790–795.
Article
Google Scholar
Phelps, Q. E., Edwards, K. R., & Willis, D. W. (2007). Precision of five structures for estimating age of common carp. North American Journal of Fisheries Management,
27, 103–105.
Article
Google Scholar
Quist, M. C., Jackson, Z. J., Brower, M. R., & Hubert, W. A. (2007). Precision of hard structures used to estimate age of riverine catostomids and cyprinids in the upper Colorado river basin. North American Journal of Fisheries Management,
27, 643–649.
Article
Google Scholar
Renesto, S., & Stockar, R. (2009). Exceptional preservation of embryos in the actinopterygian Saurichthys from the Middle Triassic of Monte San Giorgio, Switzerland. Swiss Journal of Geosciences,
102, 323–330.
Article
Google Scholar
Richter, M., & Smith, M. (1995). A microstructural study of the ganoine tissue of selected lower vertebrates. Zoological Journal of the Linnean Society,
114, 173–212.
Article
Google Scholar
Rieppel, O. (1985). Die Gattung Saurichthys (Pisces, Actinopterygii) aus der mittleren Trias des Monte San Giorgio, Kanton Tessin. Schweizerische Paläontologische Abhandlungen,
108, 1–103.
Google Scholar
Rieppel, O. (1992). A new species of the genus Saurichthys (Pisces: Actinopterygii) from the Middle Triassic of Monte San Giorgio (Switzerland), with comments on the phylogenetic interrelationships of the genus. Palaeontographica Abt. A,
221, 63–94.
Google Scholar
Romano, C., Kogan, I., Jenks, J., Jerjen, I., & Brinkmann, W. (2012). Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bulletin of Geosciences,
87, 543–570.
Article
Google Scholar
Rossiter, A., Noakes, D. L. G., & Beamish, E. W. H. (1995). Validation of age estimation for the lake sturgeon. Transactions of the American Fisheries Society,
124, 777–781.
Article
Google Scholar
Sharp, D., & Bernard, D. R. (1988). Precision of estimated ages of lake trout from five calcified structures. North American Journal of Fisheries Management,
8, 367–372.
Article
Google Scholar
Sipe, A. M., & Chittenden, M. E, Jr. (2001). A comparison of calcified structures for aging summer flounder, Paralichthys dentatus. U.S. National Marine Fisheries Service Fishery Bulletin,
99, 628–640.
Google Scholar
Sire, J.-Y. (1995). Ganoine formation in the scales of primitive actinopterygian fishes, lepisosteids and polypterids. Connective Tissue Research,
33(1–3), 213–222. (pp. 535–544).
Article
Google Scholar
Sire, J.-Y., & Akimenko, M.-A. (2004). Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). International Journal of Developmental Biology,
48, 233–247.
Article
Google Scholar
Sire, J.-Y., Donoghue, P. C. J., & Vickaryous, M. (2009). Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. Journal of Anatomy,
214, 409–440.
Article
Google Scholar
Sire, J.-Y., & Meunier, F. J. (1994). The canaliculi of Williamson in holostean bone (Osteichthyes, Actinopterygii): a structural and ultrastructural study. Acta Zoologica (Stockholm),
75, 235–247.
Article
Google Scholar
Soupir, C. A., Blackwell, B. B., & Brown, M. L. (1997). Relative precision among calcified structures for white bass age and growth assessment. Journal of Freshwater Ecology,
12, 531–538.
Article
Google Scholar
Stensiö, E. (1925). Triassic fishes from Spitzbergen 2. Kungliga Svenska Vetenskapsakademiens Handlingar,
3, 1–261.
Google Scholar
Wilson, L. A. B., Furrer, H., Stockar, R., & Sánchez-Villagra, M. R. (2013). A quantitative evaluation of evolutionary patterns in opercle bone shape in Saurichthys (Actinopterygii: Saurichthyidae). Palaeontology,
56, 901–915.
Article
Google Scholar
Witmer, L. M. (1995). The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In J. J. Thompson (Ed.), Functional morphology in vertebrate paleontology (pp. 19–33). Cambridge: Cambridge University Press.
Google Scholar
Wu, F., Sun, Y., Xu, G., Hao, W., Jiang, D., & Sun, Z. (2011). New saurichthyid actinopterygian fishes from the Anisian (Middle Triassic) of southwestern China. Acta Palaeontologica Polonica,
56, 581–614.
Article
Google Scholar